BULK RATE
U.S. POSTAGE
PAID
WILLOUGHBY, OHIO
Permit No. 58

£833

ts
e Comy

ht@n: Pascal Group
Univ, of Minneso
217 Brows
C 227 EX
Hxnnesrolis:HN 55455

Rooe
uce:

2903 Huntington Rd. ¢ Cleveland, Ohio 44120
Return postage guaranteed Address Correction requested

Return to:

Pascal News

bl Bea \gﬂé

PascarL Uskrs GROUP

Pascal News

.|
Communications about the Programming Language Pascal by Pascalers

Pascal Processor Validation Procedure

A Better Referencer

Use of Generic Capsules

¢ Implementation Reports

Validation Suite Reports

® Announcements

Number

20

__APRIL 83 _

POLICY: PASCAL NEWS (Jan. 83)

® Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de-
signed to be non political, and as such, it is not an “entity” which takes stands on issues or
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher, main-
tainer, implementor, distributor, or just plain fan. Memberships from
libraries are also encouraged. See the COUPON for details.

e Pascal News is produced 4 times during a year; January, April, July October.

* ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single-
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

o Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

e Pascal News is divided into flexible sections:
POLICY — explains the way we do things (ALL-PURPOSE COUPON, efc.)

EDITOR'S CONTRIBUTION — passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc.

APPLICATIONS — presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES — contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer instaliations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS — contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES — reports news of Pascal implementations: contacts for maintainers, implemen-
tors, distributors, and documentors of various impiementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-iImplementation Notes, and Machine-Dependent
Implementations.

VALIDATION SUITE REPORTS — reports performance of various compilers against standard Pascal
1SO 7185.

Pascal News

Communications about the Programming Language Pascal by Pascalers

APRIL 1983 Number 25

ShWw W

8 S8ERVURRR

&8

a

51

EDITORS NOTES

PASCAL USERS GROUP (UK)

LT. and M.L.S.S. By Phillip Darrington
Pascal-An Effective Language Standard By Brian Wichmann
Pascal Pr Validation Procedure By David Blyth

SOFTWARE TOOLS

A Better Referencer By J. Yavner .
The Use of Generic Capsules with the University of Minnesota Pascal 6000 Compiler
By Frank L. Friedman, Alessio Giacomucci, Carol A. Ginsburg and Anita Girton

ANNOUNCEMENTS

PACS Computer Game Festival
Oh! Pascal!

New Modula-2 Version

New Ticomm Microcomputers
Edison on |BM Personal Computer
JRT Pascal

Pascal Compiler for IBM Mainfi
Great Plains Announcement
INMOS Announces OCCAM
Tiny Pascal Plus

Help Wanted

Ridge Thirtytwo Graphics

VALIDATION SUITE COUPON

IMPLEMENTATION REPORTS
Machine Index

VALIDATION SUITE REPORTS

HP 3000 Series 33

Intel 808S, Zilog 80 (Cogitronics)
IBM 370 (AAEC)

Pascat 1100

IBM 4341

VAX 11-780

BACK ISSUE COUPON

MEMBERSHIP COUPON

B i

Good Members Hello;

I now have control of most elements of Pascal
News and future sub ion articles, and
good jokes should be addressed:

Pascal News

2903 Huntington Road

Cleveland, Ohio 44120

Our United Kingdom and European elements are
thriving and boisterous.

PUG (UK) PUG (Eur)

P.O. Box 52 ARGE Pascal

Pinner Hellmut Weber
Middlesex HAS 3FE Degenfeidstrasse 2
U.K. D — 8000 Miinchen 40

These groups should be excellent sources of local
and internationat information.

We have lost an element and have no successor.
PUG (Aus) has experienced increased costs and de-
cided PUG (USA) could support them with little loss
of timeliness. I would like to thank them for their past
performance. I am sorry I did not have the opportunity
to work with them.

PUG (USA) will now serve various needs.

We now serve inside USA and outside USA mem-

bers and also provide an air mail option for those who
need Pascal News as quick as possible.

Writing of timeliness I am reminded that the news-
letter has deadlines. These are January 1Ist, April 1st,
July 1st and October Ist. When you have material for
the newsletter please send it as quick as possible. Do
not worry about the deadlines but keep in mind news
loses its value as it matures.

I will continue to publish implementation notes and
announcements of the trade. I encourage members and
vendors to test drive their new compilers with the
**Validation Suite’’. Send the reports to me and then we
will all know the best performing compilers.

I have been asked if we would pay for articles. I
have thought about this and worried where I would get
the money.

1 have decided to accept advertising and use this
money to pay honorariums to writers of good articies.

A reminder that back issues will reflect higher re-
printing costs and have a $25 per sét price after July st

Its still a bargain at $15 now.

One more thing. Thank you for your renewals and
lovely comments. I have been encouraged by your
thoughts.

Charlie

Dear Pascalers,

here we are reopening PUG Europe:
Lor + Martha +

Erwin + Hellmut +

Jurgen + Manfred +

Urf (Korbinian).

We are Pascal fans and users from the university
and industry who are organizing in our spare time the
distribution of Pascal News for the European region.

From our viewpoint, being mainly Pascal users, we
would like to encourage you to help in keeping Pascal
News aliving forum, a market place for all Pascal users.
So here again is a call for papers and programs. Thcre

two Pascal implementations whlch use onec name (np—
pend) for two non: dard pred d pr ing
different things (append one string to another versus
open a textfile for appending text).

To increase the market place function of Pascal
News we should like to ask everybody who provides
a Pascal source for publication to state whether he/she
is willing and/or able to distribute this source in ma-
chine readable form (or even as a well readable listing)
and if so at what cost.

Lastly we would like to ask all those wishing to
contact us to use our official address:

ARGE Pascal
Hell Weber

are certainly many tools, especially for textpre

which are of interest for the Pascal community, maybe
for simple use, maybe in order to compare ideas about
problems which many of us may already have encoun-
tered. And think about all the programs for solving the
daily commercial problems.

Another subject which we think important is doc-
umentation. If you have to (or like to) use non-standard
features mentioning those increases portability. An ex-
treme example of the necessity of documentation are

Degenfeldstrasse 2
D — 8000 Munchen 40

and not to send registered letters. (We had some prob-
lems, as there is no Mr. Pascal to claim them.) If you
want to send us money for subscription please use our
postgiro account. Munchen 51589-801 or send an Eu-
rocheque and please take note that any other form of
payment means additional paperwork for us.

Stay happy with Pascal!

Compilers Notes

Pascal Users Group (U.K.)

Pascal News 23a is a supplement, to plug the
lengthening gap between US originating 23 and 24.
Readers will note that its contents are quite different
from those of previous editions. There is a shift of em-
phasis from matters of concern at leading edge Uni-
versity level, to those of concern to producers and users
of inexpensive standardized products.

That shift has been wholly dictated by the content
of material submitted for publication. Whether it is a
temporary side-step or a permanent change, will also
be decided by contributors (to future editions).
PUG(UK) is the servant of you the subscribers and as
such, will publish material originating from any i
of the user community.

We are ali indebted to each contributor but Tony
Heyes's generosity in offering his Bibliography suite of
programs for refinement through the medium of PN is
particularly appreciated. Constructive critiques are
welcome.

There is a widening of the user base and an overdue
deployment of resources to that end, evidenced by the
complementary nature of articles from widely differing
sources. Read on and judge for yourselves. Although
you will find that 23a is pitched at quite a different level

Imagine the disappoi t at failing to find any-
thing innovative or even mildly interesting. Discovered
that with a single exception, exhibitors did not know
whether standard Pascal was implemented on the ma-
chines offered to the public. More than onc of those
asked, replied ** Yes, it's called UDCS or something like
that". At one stand, sponsored by British Petroleum,
the Department of Trade and Industry, the Council for
Educational Technology, and others, an ‘expert’ merely
looked blank and suggested that 1 ask someone else.
‘Someone Else’ replied **We are only interested in
things for use in Education’’. At the National Comput-
ing Centre stand, another expert, when asked if his
stand offered any information about standard Pascal
and its implementation or use in a microcomputer en-
vironment, replied **No, there is no demand'’, deftly
followed by **Can I help you sir?"* to someone standing
behind me. In some instances, the initial answer was
"Yes“. followed by mwrepresenlauve flannel when a

ation was req

Met a guy who holds a powerful position in the
largest education authority in Britain. He believes that
BASIC is an *‘appropriate’’ language for the ‘‘mass’”
of young people who **won't bother’’ to become seri-

from that of your usual expectations of PN, I si ty
hope that you will welcome it as a stop-gap until 24 be-
comes available from Rick, Andy, and Co.

The following is offered as an illustration of the
scene which prompted the production of a supplement.

Intrigued by advertising which referred to *‘mere
humans'*, | went along to the personal computer show
at the Barbican on September 12th.

ously i din the technology. I should admit at this
point, that had my first experience of a perception of
machine intelligence been through the medium of BASIC
(or COBOL, FORTRAN, etc.), I might easily have
Jomed the nnks of those who elther “‘won’ t bother“ or

d by ob of
hunches guesses , and a dash of perceptual skill which
only occasionaily fails. PUG

I.T. and M.L.S.S.

Reproduced with Phillip Durrtn.lon'a pennhdon

One of the aims of Information Technology Year
and the Microelectronics Education Progmmme is to

‘torial, textual and numerical information by a micro-

electromcs based combmuuon of computing and

involve schoolchildren in the use of micr
and related electronic devices. There are the M.E. P
the Micros in Schools Scheme, exhibitions and events
throughout the year and beyond lt is, perhaps. fortun-
ate that Mr. Cal d to be wi g tele-
vision on the evening the programme “‘Now the Chlps
are Down’’ was broadcast and was spurred into action
then, or we would probably find the propaganda even
more frenetic than that now being put out by the en-
ergetic Mr. Baker, the prophet of IT.

Information Technology is a cunously dnffuse name
for a Year. The ofﬁcnal definition, ‘*the pro-
cessing, storage, d ination and use of vocal, pic-

PUG(UK)

* appears to encompass most of
the activities of the average person, except cating and
one or two other processes, although the use of a com-
puter is not often considered essential to the more basic
of these.

So far as its involvement of schoolchildren is con-
cerned, the publicity is decidedly shrill, the Minister's
aimbeingtohavea p inevery dary school
by the end of the year and even to think about providing
them for primary schools.

There can be no argument that young people must
be aware of computers and how to use them, but it does
seem possible that the p blaze of publicity tends

-
|
I

1o obscure the point that computers are a means, not
anend. There is also the question of how the micros are
0 be used in schools.

According to the fifth edition of the Concise Ox-
ford Dictionary (now, admittedly, modified), a com-
puter is ‘‘a calculator — an electronic calculating ma-
chine'’ — an unfortunate description, taken too literally
by at least some of those responsible for introducing
youngsters to computing, with the result that the school
micro is often given to the senior math teacher to guard
with his life, presumably on the grounds that computers
are electronically mathematical and possess no rele-
vance to any other subject.

In other schools, the computer is treated as a kind
of totem, and the pupils are taught **Computer Stud-
ies'". As a subject, computing (meaning programming)
is a singularly empty one, unless the pupil learning it
intends to become a progr . A is an aid
to the process in which it is used — in this instance,
learning — and an element of transparency to the user
rather than an obscuring of the subject by undue atten-
tion to the computer must be the aim.

Clearly, an overnight transformation, after which
every teacher would be using a micro as to the manner
horn, is hardly feasible. But, until the school micro (or

one of its terminals or even a micro owned by a pupil
or teacher) can be used naturally, as is a dictionary or
pocket calculator or a video recorder, it will dominate
the learning process. Utmost priority should be given
to teachers from all disciplines, from home economics
to athletics, to use the computer as an aid, rather than
as a distraction, so that pupils who are not to specialize
in science or engineering can see that it is of advantage
to them to be at ease with computers, but no more than
that.

The Inner London Education Authority is aware
of these problems and is educating teachers in the use
of computers so that, even though there may be only
one micro or terminal in the classroom, the pupils will
learn the place of a computer by, to use ILEA’s word,
‘‘osmosis’’. However, there is evidence aplenty that
education authorities in other areas are either hypno-
tized or revolted by the new equipment and, accord-
ingly, either enshrine it or pass it to the school computer
fanatic to impress people with.

In short, a computer is a useful tool, but that is all
it is: it can help or it can dangerously hinder learning,
and only the education of teachers in its natural use as
an aid can decide which. PUG

Pascal — An Effective Language Standard

Brian A. Wichmann,6/5/82

Over the last few years, the programming language
Pascal has grown in popularity very greatly. It is widely
used for teaching in Universities, is available on most
micro-processors and main-frames as well. In fact, Pas-
cal is one of the few languages that form a bridge be-
tween microprocessor systems and the main-frame
world.

Until recently, there has been one drawback to
Pascal as a general purpose software tool. The defini-
tion of the language was not very precise and in con-
sequence, the portability of Pascal programs was prob-
lematic. The British Standards Institution (BSI set up
1group under Dr. Tony Addyman to produce a standard
Jefinition of the language. This was later superseded by
wn ISO group also under Tony Addyman. Last October,
1SO agreed to the standardization of Pascal, and after
zditorial work on the document, BSI published the
Standard in February of this year (BS 6192).

What does this mean for users of Pascal? The port-
bility of Pascal programs should be much improved
provided suppliers impiement the Standard and users
write their programs to conform to the Standard. One
might think that the position with Pascal is no different

. rom that of COBOL or FORTRAN and yet portability
rroblems arise with these languages. There are several
casons for believing that Pascal is different:

Article formed the basis of piece in Computer Weekly
5y Phillip Hunter. 11th Feb. 1982 page 14

1. The Pascal standard is more comprehensive than
that of COBOL or FORTRAN. For instance, the
COBOL and FORTRAN standards do not require
that an invalid program is rejected by a compiler.
The Standard for these | is just a definition
of a language rather than a set of requirements for

" a compiler. This is clearly not very satisfactory since
we all write incorrect programs on occasions.

2. The Pascal Standard is simple and devoid of a mul-
titude of options. If the language has lots of options,
then program portability is reduced because a pro-
gram may not be valid without a specific option.
COBOL has a large number of options and FOR-
TRAN 77 has two major levels (essentially distinct
languages) whereas Standard Pascal has just onc
option, affecting only one part of the language. This
option is to allow procedures to handle arrays whose
size varies from call to call. This option, level 1 Pas-
cal, would allow Pascal programs to call FORTRAN
routines in many systems.

3. The Pascal test suite is more searching than that of
COBOL and FORTRAN. This is essentially a con-

q e of the definition of the lang! . The Na-
tional Physical Laboratory has been collaborating
with the University of Tasmania on the construction
of this suite for over two years. About 400 copies of
the test suite have been sold worldwide. A new ver-
sion of this suite has recently been issued to corre-
spond to the new ISO Standard. Unlike the COBOL
and FORTRAN test suites, the one for Pascal in-

PUG(UK)

cludes incorrect programs which must be rejected:
ones to examine the error-handling capability of a
compiler, and the ‘‘quality’’ of an implementation.
The quality tests indicate if there is any small limit
to the complexity of programs that a system can han-
dle and also assesses the accuracy of real arithmetic.

All the major components to make Pascal a good
Standard are now available, that is, a Standard defini-
tion and tests to verify conformance of a compiler to
the Standard.

A Standard and tests to check conformance to the
Standard are not alone quite sufficient. The test pro-
cedures must be used and results made known to those
using Pascal compilers. This can be achieved by inde-
pendent testing of compilers which is currently being
investigated by BSI (Hemel Hempstead). BSI have a
wealth of experience with testing other goods but this
is their first venture into computer software. For this
reason, both NPL and NCC are assisting BSI in this
important development.

The last step in this process is to encourage users
to request a Srandard compiler from the suppliers and
for suppliers to meet that demand. As a contribution to
this last step, NPL held a conference on this topic with
its collaborators. Professor Arthur Safe from the Uni-
versity of Tasmania addressed the conference making
it an international event. The other key speakers were
John Charter from BSI who described how a validation
service run by BSI would work. Professor Jim Welsh
from UMIST who described how the Standard can be
implemented and Lyndon Morgan from NCC who de-
scribed a guide written to support the test procedures.
Also Barry Byme, from ICL explained how the pro-
vision of a standard compiler for Pascal is advantageous
in both marketing and for internal use. Mr. Ken Thomp-
son from the European Commission explained the use-
fulness of international standards within the Commu-
nity and some of the problems in their effective
exploitation.

This program contains five errors, often
undetected by compilers. Can you spot them?

program test;
const
nl = *0Y,
began
1€ nil § '0* then
writeln(°‘WRONG®, +nil, .123)
elne
writeln('RIGHT')
end.

Try it on your system and see how many errors
are detected.

PUG(UK)

s e -

Zrrors

1. progras must contain output &8 parameter.

2. nil cannot be used as an identifier (it is a
zreserved word).

3. § 18 vwritten &8 <« (not equals).

4. nil cannot follow a eign.

8. a decimal point must follow a digit.

The corrected prograa 1s:

progras test{output);
const
nill = '0°;

begin
if nill <> '0' then
writeln("WRONG', nill, 0.123)

se
writein('RIGHT®)
ond.

Although this test is only an illustration, it does
show the wide ranging capabilities of current compi-
lers. The results of compilers tested so far can be sum-
marized thus:

Compiler Errors Acourscy of Recovery froa

detected error messages last error
[} L] 3 L[]
B 2.5 2 3
[2 2 2
D 1 2 1
E 2.5 3 2
F 3.5 3 3
G 4.5 4 3
H 5 L} L3
1 3.5 1 2

All the marks are out of 5. The half marked for de-
tecting an error indicates that the error message was
confusing enough for it to be unclear if the error was
properly detected. Naturally, the last two columns are
subjective. PUG

L ry

PASCAL PROCESSOR VALIDATION PROCEDURE

By David Blyth
Standardization Office,
National Computing Centre

1 Introduction

Few Pascal users can be unaware of the recent pub-
lication of the British Standard for the language which
will shortly be adopted internationally. Many users
have heard of the suite of validation programs, devel-
oped by the University of Tasmania and the National
Physical Laboratory, which can be used to check on the
standard-conformance of an implementation. This suite
is readily available and any user who has a copy can
use it to test his own compiler or interpreter. For those
brave users who undertake such testing this article pre-
sents a brief guide to the steps involved and draws upon
experience gained at NCC in a joint NPL/NCC/BSI
project to develop and document the validation
procedures.

2 The Pascal Standard and Validation Suite

The Pascal standard defines the language itself and
the manner in which Pascal programs are to be handled

(iii) the implementation incorporates some common
error.

No deviance test program is standard Pascal. Each
such program contains exactly one such deviation.
When a deviance test is run the resuits are inspected
for evidence that the implementation does in fact detect
the deviation. If it does not then the implementation
does not conform with the standard.

2.3 Implementation-Defined Features
The dard defi an‘,' ation-defined
feature as one which may differ between implementa-
tions but which is defined for any particular processor.
A conforming implementation must be accompanied by
a document that provides a definition of all its imple-
mentation-defined features. The test programs for im-
plementation-defined features are intended to show
how these features are handled in any particular imple-
ion. If they aren’t handled in the laimed

by an implementation. The validation suite contains
over 400 test programs whose purpose is to check
whether or not an implementation accepts the language
as defined in the standard and whether or not programs
which are accepted behave as the standard says they
should. The standard and the validation suite have been
developed in parallel with the result that the suite will
provide an exceptionally strenuous test of any imple-
mentation. An implementation which.performs well
under test can be used with confidence in its conform-
ance and reliability.

The suite contains eight types of test program
which investigate respectively, conformance, devi-
ance, implementation-defined features, implementa-
tion-dependent features, error handling conformance
arrays, quality and extensions. These classes of tests
are quite distinct and are used in characteristic ways.

2.1 Conformance Tests

Conformance test programs attempt to check that
an implementation provides those features required by
the standard and that it does so in the manner which the
standard specifies. These programs are all correct stan-
dard Pascal. If the implementation conforms to the
standard these programs all compile and execute. If a
conformance test program fails then it is an indication
that the implementation does not conform to the
standard.

2.2 Deviance Tests
Deviance te st programs check whether

(i) the implementation provides an extension of Pascal:
(i) the implementation faits to check or limit in an ap-
propriate manner some feature of Pascal;

then the implementation does not conform.

2.4 Imp} fon-Dx dent Features

An impl tation-dependent feature may differ
between implementations and is not necessarily de-
fined for any particuiar implementation. Here the im-
plementor can either state in his documentation that use
of such features is not reported or else have the imple-
mentation issue some diagnostic for which such a use
is encountered. The test programs in this area are de-
signed to determine the behaviour of the implementa-
tion. The implementation conforms only if it behaves
as claimed or reports impl ion-d d

P g

2.5 Error-Handling

An error is defined, in section 3.1 of the standard,
to be a violation by a program of the requirements of
the standard that the implementation is not obliged to
detect. An implementation only fails to conform in re-
spect of error-handling if it fails to process an error in
the laimed in the d tation. The error-
handling tests each present the implementation with
one error with the aim of determining exactly what the
implementation does with it.

2.6 Conformant Arrays

Animplementation may conform with the standard
at level-0 or at level-1. In plain terms it can cither have
conformant arrays or it can’t. If conformant arrays are
provided then all of the features specified for them must
be provided according to the standard.

The conformant array tests are a collection of con-
formance, deviance, implementation-defined, imple-
mentation-dependent, error-handling and quality tests

PUG(UK)

designed to test the conformant array features in
isolation.

2.7 Quality

Many aspects of an implementation are beyond the
scope of the standard, but it is still usefu! to investigate
them. Quality tests explore these areas and investigate:

(a) The limits on the size and complexity of programs
imposed by the implementation

(ii) the amount of store needed to perform certain
well-defined tasks

(iii} the accuracy of real arithmetic

(iv) the meaningfulness of diagnostics for common
types of error

(v) the speed of the code produced.

Quality tests often throw up some surprising results!

2.8 Extensions

Many implementations offer extensions to the
standard. The extension tests see whether common ex-
tensions (eg those approved by PUG) are implemented.

Together the test programs provide a very thor-
ough test of an implementation.

3 Using the Validation Suite

3.1 Distribution Format

The validation suite is distributed on 9 track mag-
netic tape with characteristics as follows:

Recording density : 800 or 1600 bpi
Recording mode NRZI or PE
Character code 1SO 646 or EBCDIC
1200 bytes/block, 80 characters/record.

A purchaser of the tape can specify which density,
recording mode and character code he wants.

There are 49 files on the tape. Three of these con-
tain d tation. The rest in the validation
programs.

3.2 Media Conversion

Users whose machines have tape drives should
experience no significant problems in reading the dis-
tribution tape. Their only concern will be with lexical
conversion if necessary.

Users with floppy disc based systems need to do
a media transcription to get the suite in a form in which
they can use it. This conversion can be tricky, and is
almost always done on an ad hoc basis for the particular
system concerned.

3.3 Lexical Conversion

There are two character sets to consider when us-
ing the suite — the one used to encode the test pro-
grams, and the one used to represent *'char-type’’ val-
ues on the target computer.

Roughly speaking any consistent set of lexical sub-
stitutions can be made, but some may render specific
lexical test programs, and some programs which test
the char type, irrelevant in validation.

Care is needed to ensure that lexical conversion is
consistent throughout. This is particularly important if

PUG(UK)

media conversion affects character code
representations.

3.4 Integrity Checking

Following media and lexical conversion it is advis-
able to check that no corruption has occurred. For this
purpose a program called the Checktext program is
supplied. It produces a 96-bit binary check pattern us-
ing an algorithm originally developed for use in data
transmission (CCITT Rec. V.41)

The Checktext program operates on a standard-
ized internal representation of the program and will not
be affected by legal lexical substitutions. Certain parts
of the program may need customization for use on par-
ticular systems and the source code is marked to show
where such changes should be made.

The results of the Checktext program should be

pared with standard results ined in the User
Guide to the suite (supplied with the distributrion tape)
and if there is any discrepancy then transcription has
introduced errors.

3.5 Checking Validation Suite A t

A validation suite must necessarily make certain
assumptions about the nature of the implementations
which it wili be used to test. The Pascal validation suite
assumes that

o text files

® character-strings
o the real-type

® local files

are all implemented, also that

o lines up to 72 characters long can be accepted
lines up to 72 characters long may be output
the value of maxint is > 32,000
the relative precision for reals is < 0.001
the characters needed to encode the test pro-
grams are all accepted as distinct by the
implementation

e the ‘‘largest’’ procedure in the test suite is ac-
cepted by the implementation (except for certain qual-
ity test procedures).

A further implicit assumption is that the real arith-
metic system is susceptible to investigation by certain
types of method.

The validation suite contains a program called the
**Check Assumptions’’ program which enables the user
to determine whether or not the implementation vio-
Iated any of the assumptions listed above.

4 Planning and Running the Tests

4.1 Planning is Important

Testing an implementation is not just a matter of
running all the test programs. The test suite is large and
on some hines it is not possibie to run all the tests
without breaking the suite into batches. Furthermore
close attention must be paid to ensure that the behav-
iour of the implementation is accurately recorded
throughout the test procedure. Finally provision must

7

L X

be made to make it easy to re-run any particular test
after preliminary interpretation of test results.

Choice of the method of working can have a
marked effect on the overall time taken to run the tests.
There are two areas to consider. First some method
must be chosen to extract test programs from the files
which contain them. Second the organization of the
jobs which rua the test programs must be decided. The
User Guide illustrates three approaches for each of
these methods which will cover most cases on a wide
range of machines.

Some programs may prove to be rogues on certain
implementations. There is no way of knowing in ad-
vance which programs will behave in this way for any
given impiementation. The user should take care so that
such programs do not cause the loss of accumulated test
results.

In any event some programs will need re-r 8

1 Processor Identification

2 Test Conditions

3 Conformance Test Results

4 Deviance Test Results

S Error-Handling Test Results

6 Implementation Defined Test Results

7 Implementation-Dependent Test Results

8 Leve!l 1 Test Results

9 Quality Test Results
10 Extension Test Results
Guidance on the tent and pr ion of these
i is included and a ple validation report is

included as an Appendix.

6 Practical Use
The present article offers only a brief sketch of the

because the results on the first run may have been in-
conclusive. The circumstances in which a re-run is
needed are given in the Guide.

5 Reporting Results

It is desirable to adhere to a standard form of pres-
entation when reporting the results of a validation. This
offers two main advantages.

First, when a formal validation is being done, a
standardized report:

lidation procedure. At first sight it may look some-
what daunting. In practice the key is attention to detail.
The User Guide gives fairly detailed advice on tran-
scription and test job organization, and will be found
helpful by most people undertaking tests of implemen-
tations. Once transcription and organization have been
sorted out the tests usually run smoothly. Carrying out
a full test is a rewarding exercise which offers many
lessons to language implementors. It is hoped that users
and implementors alike will use the test suite and help

to promote rapid practical standardization of Pascal.
PUG

Dear Nick,

After our phone conversation the other week, |
was rather more relieved to feel that here in the UK
there are other Pascalers at work and that PUGUK is
viable again. The gap has been too long, and I wish you
well in trying to get it going again. I shall try and do
what 1 can and particularly with public domain soft-
ware, but at the moment, I don’t have a great deal of
time to spare, nor any telecomms equipment to plug
into my computer.

lose a cheque for 9 pounds for subscription.
On the qu of back s, I have copies of 12-
16, and any subsequent or previous issues would be
very welcome. I would have thought that for 17-21
which you already have, it would be worth while put-
ting a note in the next issue to see how many people
want them, and then have your printer print adequate
copies in total. Much better than spending your time
collating everyones’ needs and doing individual pho-
tocopies of bits and pieces. Perhaps if other people
were able to lend you some of the older copies, the same
could be done. I'd certainly lend you 12-16 if you like.
After all, its the information that matters, not whether
the issue is an original or not unless we have an collec-
tors among us. Anyway, mark me down for any back
issues you can get your hands on, please.

1am now using Pro-Pascal from Prospero Software
as my major programming tool, as well of course as
Wordstar to compose programs and write letters. The

hardware is OEM kit from Sirton Computers in Purley,
by the name of Midas and is in essence an Integrand
10-slot S100 case with PSU, Ithaca IEEE S100 cards
(MPU-80, FDC-2, 64KDR and V1O boards) giving 64k
and 4Mhz Z80A with CP/M, plus 2*YE-DATA 174D
IMb drives. The printer is a Qume (a luxury really), and
a Volker-Craig VC404 completes the outfit.

I will try and compose a critique of Pro-Pascal as
soon as possible, but version 1.4 is due out soon with
8 byte longreal: g other goodies. 1 have written to
Charles Foster of Pascal/Z User Group asking if he or
his contributors would permit the distribution of any of
their Pascal sources to PUGUK members appropri-

ately modified to BS 6192, or if indeed there is any other,

Public Pascal around in the States. I think we ought to
be prepared to reciprocate on this, don't you?

In converting from programming mainly on main-
trames in Fortran and having a nodding acquaintance
with Cobol, Basic and other languages, there are times
when even Standard Pascal has its limitations. There-
fore, I've thought of two ways of improving the lan-
guage. As PUG may have some influence with the pow-
ers that be, I've taken the liberty of including the
suggestions — by all means put them in a news-letter
if you like. I don't believe in trying to persuade com-
piler-writers to augment their compilers as their job is
to impl the standard. If the | ge is to grow,
and if any such need is identified, then it's the standard
that must mature. Now BS 6192 is published, it will be

PUG(UK)

some time before any further thought is applied to the
subject 1 expect, if ever, so perhaps now is the time to
see if anyone is interested.

John R Logsdon
18 Darley Road
Manchester M16 ODQ

rong! Pascal L

a) Structured constants.
Program make-up to be for example:

PROCRAM example;
CONST Snehundred=1bo

scalartype={coffee, Jam,bread, tes, hocult suicide);

2Rty pe=RFCORD
s:integer;
b,cichar;
d:array[0..9] of integer;
fincalartype;
givey of scalartype;
hinrray(1,.20] of char

YND:

T 11

TABLP. ex!texctvpes
onehundred,a’,chr(20),(N,25,50,73), fam,
{coffes,tea, hread], cholesterol’;

VAR exvariextype;displayl:char;

RECIN
exvar:=exl;
dtaplayli=exi.hl4);

Note the use of the ‘chr’ function to set up unprint-
able characters, the absence of any delimiter other than
those already used in Pascal and the access of a con-
stant array clement. There is no reason why ‘ord’
should not also be included so that portability is en-
hanced. The syntax follows closely on that of Pascal as
it is and involves no ambiguity in type declaration im-
plicit where structured constants are declared in the
constant section as in some implementations. Pointers
declared in the correspnding type declaration may be
set to whatever internal value represents nil, however
they are named and uncompleted arrays of char ini-
tialized to spaces.

Such a feature will provide geniune structured
read-only constants without the ugly initiation pres-
ently necessary in Pascal. In fact, in practice it is easier
to put records for initialization in a parameter file and
read them in, which does not seem an elegant solution.
For micros with restricted memory, initializing a record
from constants needs up to two copies of every element
— one dynamic and one in the constant area, which is
rather wasteful of space.

h) Tvpe-change function.
Svatax to be, for efample:
PROCRAM snother;
CVIST sevvssncsconsaes sune OTC

TYPF ecore=ftirat aecond,third, fourth);
frutt=fapnies, vears, oranges arapes):

PUG(UK)

VAT thisscoreiscore;thistruitifrole;
AFGIN
(caleulate thisscore somehov)
thisfrutt:=fruit(thisscore);

sesssccssnsecsnsrcsasana QLC

This facility will provide alogical completion to the
built-in functions ‘ord’, ‘chr’ and provide a much more
readable alternative to the use of variant records. Al-
though there is no reason why the method should not
be available for records if the matching of record
lengths were entirely the programmers responsibility,
there is an objection in that the internal representation
of variables will be machine-dependent. I envisage this
type-change function purely for scalar variables be-
tween scalars and perhaps for pointers between point-
ers. Itis of course realiy a mechanism to cause the com-
piler not to check types.

(This facility is similar to one available in AAEC Pascal
8000 for the IBM 360/370 series, and attributed to
Kludgeamus)

If any readers have any ents for or agai
perhaps PUG can help to air views?

HELP!

Dear Nick;

Systems Used

(i) Apple (1) UCSD Pascal.

(ii) To be delivered December 1982: Burroughs B21-5
(384 K Byte). Pascal ISO draft 5.

Special Interests

Business systems. Particularly rapid access to un-
sorted data items. Data base management systems.

Information Please .

We would be interested in knowing of a Pascal
compiler to interim 1SO standard or UCSD for Bur-
roughs B1955 with 0.SM Byte working store. Manufac-
turer does not support Pascal for.

Mr. P A E Herring
MAPAC

17 Market Square

Leighton Buzzard
Bedfordshire

LU7 7EU

Dear Nick,
CET TELESOFTWARE PROJECT

Thank you for your letter of 6th December.

1 think you must have got the wrong impression
from my letter of 3rd December. We certainly do not
want to see a different telesoftware format for PAS-
CAL. As Iunderstand it, the only problem with the cur-

L rYy

rent format is the TAB character which lies outside the
PRESTEL character set. You may be interested in our
recent extensions to the format (copy enclosed) which
overcome this.

As far as including PASCAL programs in our li-
brary is concerned, all I am saying is that we need to
learn how to walk before we can run. We are keen to
include programs in languages other than BASIC, in-
cluding PASCAL., but need to be sure there are people
who can receive them on our system and will find them
useful, before putting them up.

If you know of PASCAL programs which will run
on the micros most used in educations, ie 380Z, Apple,
Pet, Acorn and TRS 80, I would be interested in re-
ceiving details.

Chris Knowles

Telesoftware Project Manager

Council for Educational Technology

3 Devonshire Street, London WIN 2BA

On receipt of the form and remittance we will send
a magnetic tape containing the suite.

The cost of the package is £100 sterling (+ 15%
VAT for UK users) and cheques should be made pay-
able to “'The National Physical Laboratory’ quoting
our reference number NPS 2/01.

Z. J. Ciechanowicz

Division of Information Technology & Computing
Department of Industry

National Physical Laboratory

Teddington, Middlesex TW11 OLW

PS When requesting the suite please supply the tape
format you require:
i.e. 1600/800 b.p.i.
ISO/EBCVDIC code

We generally write our tapes with fixed length
blocks, 15 records per block, 80 characters per record.

Dear Pascal User,

Please find enclosed details regarding Version 3.1
of the Pascal Validation Suite which was released on
the first of October 1982. Should you wish to receive
acopy of the suite, please fill in the enclosed application
form for a license and send it together with your re-
mittance to:

Dr. Z. J. Ciechanowicz

Division of Information Technology & Computing
National Physical Laboratory

Teddington

Middlesex TW 11 OLW Engiand

Dear Nick,

1. Can you recommend a PASCAL for XENIX? (LSI
IT UNIX)

2. Do you know who distributes the Dutch ‘Fres Uni-
versity’ version of PASCAL? (in the UK)

Brian Kirk

Robinson Systems

Engineering Limited

Red Lion House, St. Mary's Street,
Painswick, GL6 6QR

Teiephone: (0452) 813699

VAT Registration: 302 3124 28

PUG(UK)

R

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address to which information
should be sent (write ‘as above’ if the
same)

Name and address of requester (com-
pany name if requester is a company)

Signature of requester
Date

In making this application, which should be signed by a responsible person in the case of a company, the requester

agrees that:

(a) The copyright subsisting in the validation suite is recognized as being the property of the British Standards
Institution and A.H.J. Sale;

(b) The requester will not distribute machine-readable copies of the validation suite, modified or unmodified, to any
third party without permission, nor make copies available to third parties.

In return, the copyright holders grant full permission to use the programs and documentation contained in the vali-

dation suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of comparative

reports, and similar purposes, and the provision of listings of the results of compilation and execution of the programs

to third parties in the course of the above ctivities. In such documents, reference shall be made to the original copyright

notice and the source.

OFFICE
USE Signed
ONLY On behalf of A.H.J. Sale and the British Standards Institution

National Physical Laboratory Teddington Middiesex TW11 OLW Telephone 01-977.3222 Telex 262344

Pascal Compiler Validation Suite

NPL issued version 3.1 of the above sutte of test programs on 1 October 1982. These programs permit a user to
check the compliance of a Pascal compiler and run-time system with the 1SO standard for Pascal (1ISO 71'85. also
BS 6192). The new suite is an extensive revision of version 3.0 and the work has been undenakm.ln conjunction
with Professor A.H.J. Sale of the University of Tasmania. Subsequent revisions to the test suite are likely to be of a
minor nature.

The British Standards Institution will shortly be launching a pliot validation service base upon the test suite together
with other material.

The test suite consists of about 17,300 lines of Pascal programs plus addition comments on each of the 553 test
programs. The programs themselves are divided into a number of classes as follows: -

182 programs checking that the features of the Standard are available;
157 programs checking that illegal constructs are rejected by a compiler;
82 programs checking the error-detection capability of a Pascal system;
60 programs checking the quality of an implementation;
40 programs checking for Level 1 Pascal (‘conformant arrays’)’
16 programs checking the variations permitted by the Standard;
13 programs checking for features defined for each implementation;
3 programs checking for extensions. B.A. Wichmann
Z.J. Ciechanowicz, extension 3977
For BSI, J. Hatton-Smooker, telephone 0442-3111

PUG(UK) 11

|, ry

o Tooks Soptmans Tk Softmare Tools Sopiware Tools Soppmare Jool Soptware Jools Softmane Jools Sy

A Better Referencer

By J. Yavner
Money Management Systems Inc.

The program which follows was developed from

the Currie/Sale procedure cross-referencer published
in Pascal News #17. Of course, any programmer who
looks at someone else’s program thinks he could do a
better job, but 1 think that by almost any standard I suc-
ceeded, though it took me much longer than Sale’s
three days. I have an excuse, however: prior to this
one, I had never written a Pascal program; my experi-
ence with the language comes solely from the articles,
standards proposals, and validation suite which have
been published in PN.

The program is shorter, simpler, and almost cer-
tainly faster: It has half as many source lines as the
Currie/Sale version, but the format is different, and the
number of statements in only 25% smaller. The HP
1000/2015 compiler generated 4604 words of code and
static data (the 1000 is not stack-oriented). The proce-
dure descriptor is 25% smatler; the reference descriptor
is 97% smalier. The syntax analyzer is more tolerant:
missing semicolons do not faze it. The program needs
29.80 seconds and 1376 words of heap to process itself,
356.80 seconds and 5780 words to process the 103-pro-
cedure, 4000-line P4 compiler.

The improvement stems from the use of a different
data structure: The Currie/Sale referencer is optimized
for programs of virtually infinite size, using trees and
stack and rings of procedure descriptors and chains of
reference descriptors, which allow the procedure da-
tabase to grow very large with the program’s taking ail
the memory ever manufactured and all the time till
doomsday to process it. This referencer, on the other
hand, is optimized for small programs, and uses an ar-
ray of procedure descriptor pointers whose size is fixed
by a constant, a quick-and-dirty replacement sort, and
sets of reference descriptor flags (two sets, since the
program prints the reference data from both view-
points, caller and callee). As the program to be pro-
cessed increases in size, memory use increases quad-
ratically, eventually surpassing the Currie/Sale
referencer, which started out higher but rises only lin-
early. E tion time, I i ought to expand sim-
ilarly. It might be interesting to determine where the
cross-over point is.

The program wuses the CASE . . . OTHERWISE
construct which many processors don’t recognize yet.
The solution for this problem is to upgrade the proces-
sor! An interim fix is to replace the CASE’s with
IF . . . ELSEIF constructs.

Optional lines

Those lines which begin with the null comment are
not vitally necessary to the program and can be re-
moved without seriously affecting its operation. They
serve primarily to handle HP1000 extensions.

12

Lines 19, 21- 24 49-51, 68-71 522-526, and 551-564
make use of imp i pend intrinsics to
print processing time and heap usage information.
These lines can of course be replaced with the appro-
priate code to do the job at the target installation or sim-
ply left out — like most statistics, they're not really
necessary.

Lines 113-116 ignore compiler directives. HP Pas-
cal/1000 has its directives bounded by dollar signs. The
format is like strings or comments, and thus is in the
spirit of Pascal, but nonetheless the construct must be
handled separately.

Line 1 is a compiler directive (another is on line
71). The default output line width is 128, which causes
132-character lines to wrap around even though there
are still empty columns on the page.

Lines 307-308 and 345-346 add the HP1000 intrin-
sics to the pre-defined procedure table. They can be
replaced with the appropriate constants for the target
installation or removed to make the program conform
to the pure standard. The format is as follows: Each
procedure name is followed by a space. A hyphen ter-
minates each constant. The last string ends with a pro-
cedure name, space, and hyphen, and is then padded
with trailing spaces to ConstLen. As many strings as
necessary can be added at 307 as long as they have cor-
responding calls at 345.

The directive *‘external’’ is recognized by the re-
ferencer. Lines 8, 149, 237-238, and 477 could be mod-
ified to allow the it to recognize the target installation’s
directives. The impl tation d y was in-
cluded primarily to show how this i ll to be done. The
nature of the dependency is such that it can be left in
even if the target doesn’t recognize it.

Options

This referencer contains a much more efficient
AddlIntrinsics procedure than does the Currie/Sale ver-
sion (because intrinsics inclusion is not the default for
that referencer, while it is for this one). The feature can
be disabled by setting Intrinsics false. The procedure
itself is quite small and can be left in even if inactivated.

The program is designed to print the reference in-
formation from the standpoint both of caller and callee.
Naturally, twice as much information takes twice the
space and twice the time to print. Either table can be
disabled separately by means of CallsTable or
CallersTable. Almost all the code for printing the tables
is common. As an aside, when both tables are printed
it is sometimes difficult to figure out which direction is
represented by which table, even though the table’s ti-
tle says ‘‘calls’’ or ‘‘callers.” One table contains only
a single procedure defined at level 0: the main program.

Software Tools

Obviously no procedure can call the main program.
Similarly, the other table contains the intrinsic proce-
dures. Obviously they don’t make any calis.

The identifiers in the input file are truncated if they
are too long to fit into the identifier arrays. The length
of these arrays is specified by IdentLen. Changing this
constant requires corresponding modification to the
constants defined on lines 5-8, 83-87, and 210-211.

LineWidth can.be set to any appropriate value.
Settmg it to 80 gives two columns of reference data,
which is somewhat hard to read (try setting your ter-
minal width to 2 some time). Setting it to 56 forces the
tables to have one reference per line, which is rather
vertical but still readable.

MaxProc determines the size of the array of point-
ers to procedure descriptors, and thus the maximum
allowable complexity of the input program and the re-
ferencer’s static size. If it is set to 64 and the HP-spe-
cific intrinsics are removed, there is room for 34 pro-
cedures, more than most programs published in PN
need — more than most programs executable on a pro-
cessor that can’t handle large sets probably need.

StackDepth specifies how many BEGIN/END and
CASE/END structured statements imbedded inside the
body of a procedure the referencer can handle. Few
programmers can create code more complicated than
16 nested structures (the referencer never goes deeper
than four), but if desired the stack can be extended cas-
ily, since each element in the stack takes only one
integer.

Offset is the distance from upper case to lower. The
program may be set for EBCDIC by changing this con-
stant to the appropriate value.

One final note: no numbers larger than 32767 are
needed by the program. On some processors (such as
the HP 1000), slgmﬁcant space can be saved by assign-
ing MaxInt to 32767 in the referencer’s global constant
section.

APREF T=00003 IS ON CROOO34 USING 00014 BLKS R=0000
CISLINESIZE 1329

rrosraa PrafCinsutsouteut)

1abel 9999;

const
BiankIdent = ' i<l
Prosldent = ‘srovren "
Fudldoat = 'forward i
ExtIdent = ‘externs! .
Iatrinsics = true (Pre-define intrinsic sracedures)
CallsTable = true (Print tabie of refersaces FRON rrocedures)3
CallursTable = true (Print teble of refarences TO srocedures)
Identien = 14 (Srenificence liart for sdent ifiers.)5
Linetiidin -

¢
ManProc = 74t u.mv- nusber of srocedures. This shewid
{ be set to » convenient set site.
BtackBerth = 16 Mauimum block nesting withia o erecedure))
0rfset s 32 { Distance from verer- to lower-cose 15
(eTine = 11 € RTE retura-tine-of-das code)I
ture
{ YoneHard . ~32748..327671
(dnfoRec = racord 8/ tohsbsInItON,Codensf » Onevord end}
CITimeRec = record aillisecs secs aiAutes hours dove! Daskord end)
O
note = 0. Mexint)
StachRense - 1. ltl:lh—ﬁhl
ErrorTyses = Redefini IMiseloceds
TeoDesr ;LostEnds :Lﬂ\"r lodd §
ll.ntkmﬁ = §,, ldentien}
1dentte = set of ldentRense
l“n\.ltrlh' = eached nrr.ltldm\tllniu] of Cher}
» “Identsteinal
Prachaen; 2 LoMexproc)
Lostrochense = 0. NecProc
ProcSet = set of Prxlunnl
ProcDesc = record
nene v IdentString)
hsaecases 1 IdentSeti
Tovel 1 LowProcRense
scors] Mrotllni- €0 1 Outl 1t Inf 21 v Occluded M
dofline 1 Whole?
Software Tools

AR de e e e e

badu|ing 1 -1 mexlat)
caller callors 1 ProcSol)
ond)

ARSI g 2N

Clinfe s InfoRac!
(iee 1 Tiashec!
Cleacy ail 4 lnteser)
Fines roren t Wnale)
airha airhedivit ¢ sot of Chor}
idents pros v 1dentitrinw}
Ioentcases o TdontSet)
hoor idont 1 TdontPiri)
13 o DefDirecti L 2 €1
srocaun 1 PracRense)
Slech 1 LowPrecRease)
1188 1 errav(PrecRanse) of “ProcBesc!
sartiist + sreaulProcResse) of Preckense’
Srachet ¢ Stachkense)
stach 1 arravtStockRansel of Hhales

:;".‘m. Exec(codetlnetord} var Lise!TineRec)) externsl)
:;n-onu Setinfa SALIAS ‘BGNSI’S (var inforinfokec)) exterasl)
sracodure Resdq) forusrdl

:’:‘-:m. "““.'::-n fron iaPuts keeeind Lrack of sarenthes:s ;

¢ and nl»nu uotstions, ton markse
ons ¢ ler diraCtives

{ muabers. 3}
ulnlm;u»uun:nmu-u-huc-n-!ulmt 1010808 S tdentcasen))

€ Ioentian, IdeniRanve,sidentvres inrul OfFsoL sraren, 'Read

conet
Precldent = ‘srocedure; '

Fumcideat = ‘fusctien s
Bedinldent = ‘basin "
Casoldeat = ‘case M

1 t = ‘end 'y

o
4 1 leentRense!
h § Char)

—u‘.dun hirBigits)
Skie numeric cheracters)
!.l'hll 3

bovin while (ineut~)=’0’) ANB (input (2’9} do Resd endi

bevin (Resdident)
idan = llnh ideat)
Amunn te [H

Ideniure = InPreacess)

roveat
o in insuttl
if enar (' then botin (Perenthesis or comment)

ad
1€ 1neut~(}’a’ then roren i= rarencl eise bev)n { Comment)

Resd
chint?d
ond)

andi
u chal): then saren n raran-i}
chmr?t? Lhoa rocest Resd until ineutoe’’iry
n u-r then resest (Comeiier directive)
rorast Resd uatit (inrutl~a’s’) OR (imsul=s'’’’)}
han revest Resd wnlil meut~e’’’’}

P
jopeseses
is

14 :h-'l' thu revast { Conmen
while LUt (2727} AND (A»v\"()'.'i 4o Resd}
ir inu"’"" then Resd)
watlil (insud~m?’)?) OR (iaput~e’})}
1 (£R)=’G7) AND (ch(n'?’) than Bavin (Nusber)
Shishisite)
AP inevtna’. ’ then Desin (Deciast
1]

Aosd.
Siebisiter

ond)
it Clarut~s’E’) OR (1arui~a’e’) Lhen bosin ¢ Envonent)
Resd}
Read}
Skivhigitel
onai
ond
else 1e iaruts M BiPRedivit then Desin (Identifier)
4 ve 1)

un-
10 ident110 ¢ uo- 4 1s so12
identlJ] 1= insut

Resd.
watil NOT Cineut~ IN elehadisit) OR (snldentilen))
for J 1w 4 dowato | d8 ¥ ideatlJ] IN aisha
tuu begin (Canvert to iowsr Chse
dent(s) 1o chrlordlident(i3) e0¢faet))
I‘-n'.zlloi 1= (dentcnsescls);

u-u-n t= Qther)
1 insutt IN Srenadinit
then resest Reag unlii NOT (insut™ IN sishadivit)

else |f (identeProcident) OR(Idontofuncident) Lhen 1dentveni=Bef

siun if (identoFudident) DR (ident=Extident)
thea Iéntuspsapirective

wlee i
alse it identeCaseldont tnu m-nt-nv-:-nﬂ-n
wlse if ol

and
atae i N7’ than Read)
unti] identure(dInProcessi
ond}

erocedure Error (error iErrerTyres))

13

ar aes
619999, sbracket sErrorTyres, |ine,HoxProc, soutrut s stack StackDerth 3

bewin
Writetoutsut, P REeNNe Error oL tine!d)’ weauEn 1 7))
cess arcor of

t
writein(outruts ‘File does not b
~edefinitions
tein(outruts 'Procedure defined tuice at same scoee’))
tooManwProces
writain(outruts’Too eans rrocedures, sax’ MaxProctd)}
Hivsiacedt
writetnloutruts 'Niseiaced reservad word’) i
TooDesr |
writeinioutruts*Too eany nested biocks) mex’ BtackDerthid))

n uith “rroer

»

ostEnd
uru.ln(uuu«t. End-of ~file -~
ostPeriodt
--u-u(wtmt:‘u«ulcnod END’’s or sissing EOF reri0d’) i
and

asine END PR30

nated blocks:’)

" bunnu thea writeln(outrut, Unte
while b 133 s of unestched BEGIN/CASEs)

do begia (Print tine
Sracket 1o brechet-1i
writeintoutsut s stackibrochet)i19)f

end}
soto P9NY;
-t

unction Forsetidentivar deatildentSiringi
tcases:ldentSet) i [dentfir

for rrintine. Fointers sre osed ko

result of 8 function must be e.ther ordinal of rointe:

Gihear i dent,ldentien: ldentPte, IdentRan e, [dentSets Iden

cause Lhe)

St ing, 07f set)

3t ldentiengei
"

!or- tident - hearrsentl

Ident” t= ident

fg. J 1= 4 to Identien 4o 1 J IN identcases then
hear cdent (3] xche (ordiness dent [43) -DFfset) §
en.

rucadure PeinTapletcs nt.n.l.n-mnnn)l
forestted outeut of collected r
ocedures he

vers)
ou af definition)
G tBooteans 'For. .uanc.luonuon.umqunatn.||u.noutmt.)
rrocnuesProchanve ProcSet s cos aortt) bl

const
Identhidth = 18 (Identtens) (tuo sraces before ideat))i
Indent = 39 ¢ continuation «ndentationt IdentLens2? 3¢

var

4 t 1. .Linedideh}
srac, ref 1 Proc
refset 1 ProcSet;

besin
wr(teintouteut) i
tmiouteut))
Itetoutrut,* def bodw Tabie of)3
14 calistanie Lhen write(oulrut,’caiis’)
«iss writeloutrutsicaliers’)]
writelniouteuts’ for ‘reroe)
wriletnouteut)
for srocixl to procnum do with listisartlistisrac)) do
(¥ catistable AND (calis<)[)} DK NOT cailstabte AND
tlcatters()() OR (leve1)0)) then begin (Include each rrocedure)
)

€ 2f 1t called or was calieds but include all user-3efineds
€ in the tabie of callecrs in order Lo find never-useds)
sinlndenti

(f Jdefiinem0 Lhen write (uteut;’ '112) etse bevin (Non-intrinsics)
weite (outeut s defiine13))
I3 vodviine o

write(outeuts’ none?’) (Body of Forverd erocedure not found}i
write(outeuts’ exlern’))
anlate

write(outsut .’ Foremi’)s

theru

write (outeut bodul inet7)i
g}

endi
writetouteut s leveli?,’ ,rurnu-unuuum‘ eca
Jaten then refsmtincoll set .
for re o srechum 4@ 1f sortls l(r.f) IN refset then bewin
" lc-nuna'.numwmln 1 Ahen besin (No room 1eft on line)
writeln(guteutt
writetoutsuts’ 1 1Inclent) }
si=indents
wnd
with Fist{sortiistlre@1)” do writeloutruts’ o
Forastident (nase,nsswcases) ™))
J1mseldentiidin)
end)
weiteintoutrut) §

yrerany)

wmctioa FindProc(ver proc! FrocRanes): Boolean’
Set are \o lu\.() wiesent that roints to the

Frocbesc
s hoote. mnmv..uuu-ruuu-.rrunnn)

besin i€ {1atf1)aNIL then FandProci=éaise
rrocieasrrocnuel
whale (tirstirroc)” . nene(3 dent) OR (1istlsroc)”
tarac)l) do —nx roc -
FingProcistrue
with n.u.(-ro()" do 1 (scoreC)1)OR(nann()sdent) then FindProcinfalue’
anct end)

coews0r)} AND

ocedure AddProc i

ver rrociProcRanse)
9in
I FindProc(sroc) thea 1f Iistlrroc)”, evatublock
then Error (Redefinition))
e eroc o then Errord [3]
(4 11stTIIONIL thea srocnumi=sracauneld
newilistirnocnual))
witn l-n(-ro(nu-)" do besin lait
I iden
m-nt.cnn»
biock)

11e)

15
1 line)
te 04

1. L))

reocedura Agdintrin

(Add the rre-da he rrocedure fist)
3 ankIdent,®ident unidentca oulu-m.l-n- r#line)

nst
ConstlLen = 53 (Lenwth of the inteinsic

w-nmm conttunts)3
Consti = ’abs n:nn chy

Const2 ’gd ord . d

Constl = ‘round min SAFL SUCC trumc uUnrack write writaln -
() Consta prend c1ose hait 1inesos mark ros oren averrrint-’J
() ConsiS = ! posilion srosel ceaddir reiease sesh writedir - 2

= 1..Constlen)
= packed srraviCoastRanse) of Char)
var kildentRanse!

rrocedure AddIntrinsick(names iConbtrine))
U U0 the real work Of the srocedure. MNecebsarw since the intein
£ definition constent (s seclioned
€G11ASIFrocsBlank [Jent ,ConSLr 1%, Cons LRairgl

cs

rdent ek)
var siConstRanse’
bewin
st
resest
1§ nasesi.]=’ ! Lhen besin (AJY srocedure)
AddProc
. IRy
3
1dent tx Biank Ident)
o
elve IF nam ’ then tesin (Resd next char)
identih] 1 Y
1 Y
’ (LY

a5
unt i neseslildstori
and)

10 € AdUlntirinsice (outer))

ident tx Btankldent)
1dentcases 1= (1)
Vine 1= 04
. ta 1d

Addlntrine cs(Constlli
Addinte insics(ConatD)
AGS{nteinsica(Conet3))

) AddIntrinsics(Conetdd

€) AddIntrinsics(Const3))
bine 1= 1§
enar

rrocedure Processkiock

{ Process s srocedures function: or sras block)
(B1!AdIPrac ablock ExLident, (FindPracs iForaatident ident, | dentcan)
¢ identuresiinesiist:LowPracRense souteut ssaren reacnua Frochense)

var
rroc .t ProcRanse}
curcenttocalrdot ¢ LouProckan.

rrocedurs ScanArsusentsi

{ Read arvuments: Checking for score occlusions sad forms! procs)
(B11AddPrac blocks 'Error . 1F indProc, (Foraat ldent s ident, s dentc
€ rdantyresiiner | 1t houtPut srarenssrroc: tReadldent b

bewia ScanArgusents
earenisd ¢ HShouid be sawuav: but aske sure)J
Re

1n (Iaside srevaeat Fist)
then f FindProc(rroc)

then 1istirroc] . scorsisbiock

®ise else 1f tdentwre()Baf then Error (Mise laced)
in (Forms! srocedure/function)

v
writeln(outrut,line:S,’
Farmetident (ideat, ident,
weiteinioutrutslineis,’
AddPrac)
Jistleracnum]”.bodwtine taNaxints

fibinche2,

)73 8
(biocke))#2, Foreel)}

end’s
Resdident
L€ raren)l then resmat Resdident uatil saren(2)

rrocedure ScanDefst

{ Resd definitionar Checking for scors occiuaions and local rrocs)

€Bibiocks 'FindProcs 'Farastideat ident 1 deatceses: (denture:iine,)
b

€ ®)ist.soutrut issroc o IProcessdiock , tResdldent

besin un.u na.nuu()n. n) AND (identure()Directive) do besin
th

weiteincoutrut: linets,”
Formatinoent(ident,identcases))]

Tibiockn2,

Software Tools

)
tnner Proc is catled for each,)

o R

Process¥iock?
)

-
Readldents
ond end}

srocedure ScanBodwi

€ Chack bodw for references to srocedures)

{Bibracket current, (Error, tFiAdProc ¢ 1dentures inputsline, list,)
C weroc:Read, !Resdldent)

-rondun Pulhl
Stack o ‘beg or ‘ca nt-brachet |ine-nuaber)
(Ol-hrnnuntnanl\unuuu.lu:tnnth 3}

benin

ecklbrachet)ialine’

it bracket=fiteckDesth Lhen Error (TooDeer))
bracket tebrachatel]

rrocedure Foe s
<Bibiock.sbrachet, IError,inrut }

besin if Cinspt~e’,’) AND ((bracket)2) OR (block)l})
then Error (LostEnde) else brackeli=bracket-1 =ndf

besin (ScenMody)
listlcurrent])”.bodel inai=ine’
Push}
"

L
l' dident }
identvre of
Mflblrochv-l
Error(Wiselaced))
Oren:Coselrent
Push)

Close!
Pos)
Othert
besin { Possible reference or sssivneent 40 » function)
whiie inrut~=’ * do Resd}
i inpyttaric then bewin (*

* rossible)

Resd)

if iarutcer=’ then identu
endi

If 1dentyre=Other then rf FindProc (prac) then tasin { Ref)
with {istlcurrent) aliselerachs
Vith 1iatlrrocT d0 rallersiecel terastcurrentd)

»bef { Assisnagnt)}

ndi
unti) bracketnti
and}

rrocedure Deletabefei
(Set local procedures vut-of score and re-instate occluded ones }
(Brolack s 1iststocairootsrrocnua,Frockansy)

var erociProcRan
bedin
I focatroot(rrocaue then for erocizlocelrootel to srocaum do
bistleroc) . score:=0]
for procistocairoat downto t do
©f Listlrroc) . scorest.lock then 1istirroc)”. scoreintl
endi

besin { ProcessBlock)
curreat t=
i Hh‘rx(!ru) then with 11
i velxblecx) AND (bodu!ia
t»-» currentimproc ¢ Bodw for a foruwsrd-deriered rrocedure })
1f currentad then Lasin (Add Aew rrocedurs }

tirrocl” do
)

currentinsrocauel
)

»
locslrooti=rrocnyus)
biockt=biockeli
ScanArsusents
Scanhefs)

weiteln(outrut, tine1S,”
1§ 1dent Oeen then ScanBodw
ol l' .m\-t-ua-nt then (istlcurrent)”.bodultness=1}

3 wlno-brunumu.«n\- 1dentcasand) b

o
blorll-blotl‘l‘
w*nd)

rrocedure Sorti

(Since there %o foew rrocedures te sort: there)
"o d for o coerticsted alowrithe b

(Olllntw ocAus Prockanse s Ssortiist)

ver
Procs skt PracRense)
status 1 tIaPrac

bevia
sertiistiidial)
far sreci=2 te rracaus 4o betin
23

o
118tk neaeinsne Lhen Tor
f el thea statusi=Finishe
etse if 1istlsortiistin-111".noeeinsee Lhen Risk-1
stotusieF inithed

= 15 I shed

L

t

u‘ hseroc thes stalusi=Finished
+f List{eortintikl} . nsaecsnane then Riskel
atatusisFinishad

uw.-ﬂun nod)

[dewnto 8+l do sortlistis)
mullt(lllu!ul
ondi

orttists-111

ad)

D'.(D“l Read}

€ En each cher froa input for ead-of-iine)
¢ Au ulrsline 3
betvin R
set dinrut)

if ealntinout) then 1ine
)

ines i

bevin { Pref)

{Mnec(GeTina,tine))

(Inith tine do Dowin { Save start tise)
sec 8.

aittivecs)
ta [rAT,

e 10,
V= sirhecl’s

BRI AO I INS LRF I (I R I
R NI I It IS 1]
1aoh

P vttty

» IR I
ot

Listc13

raren

block

brachet

fine 1

srocrua LN ¥}

Aew (have idont) |

3 Intrinaice then Addlatr

Nesdldent

u unuwvnuul thie ‘B¢
1den

ldent Cident el
writeinloutruts’ line Tabis of ﬂ"-

1taons for /srrom)

- . tarut 3
of InPUt ()’ .7 then Ervor (LestPeriod))
Sar M

a
1€ CalisTabie then Prinlsbieitrue) (Phase 34)

(Foise) { Phose 30)

ot
()-n.n info.time ¢. begin (Prist statistics)
.nc

-sect

ariiis "
11¢0 then uun (Corract for borrou from miliiseconds)

@il 1= mi1et00

sac iv sec-1}

-}
writeloutrut,’Ness = 7, initoh-tenil,* werds. Time * ‘rsecils’.?))
if aii(10 thon writeleutrut '0%}}
writainioutrut miiin,’ saconds.)i
ond)

AmmmnmAa A~
[eroterrissatestrore)

a0 (autrut))

L] PUG

”md.

Dear Rich:

The software tools section of Pascal News is ex-
tremely useful. We have implemented Prose on the HP
3000 and we enjoy using Prose to do our text formatting.

This letter includes one enhancement to Prose and
one bug-fix. The enhancement provides a new terminal-
type: DIABLO. This terminal-type provides for pro-
portional spacing on DIABLO terminais. The changes
are as follows:

Lines 167 to 173 become:

{ THE FOLLOWING ANE NOT onEc‘Hvu BUT IT IS CONVENIENT
{ TO INCLUDE THEM [N THIS TABLE

AST, { ASCII TERMINAL]
LPT, { LINE PRINTER 1]
Software Tools

AT, 1 AIMIS“/JACOBSOI TEMMINAL)}
DA, { DIaBLO TEMW: ¥
ILTY; { ILLEGAL I

_Lines T89 to 793 become:

CASE TEMMINALTYPE OF
AJT

DIA,
asT! IIl\‘!'(C.).
LPT: BEG
lll‘l’[Ll(OUTPUY),
CARRIAGECONTROL: sPLUS
£nD
END

Lines 828 Lo 825 becowe:
END | IF TERWINALTYPE « AJT }
ELst
IF TERMINALTYPE » DIA THEN
BEGIN

X2 :s
FON X1 1 TO LEN DO

15

ry

WITH STR(X1) DO
IF € <> BLANK THEN
BEGIN

IF lz <> 0 THEN
Gl

"
n‘ (xz MOD CHAMIDIH » 0) THE
ix 1 TO (X2 DIV c»AmD‘rn) 00
lIlTEHBLIIIK)
LSE

BEGIN
FOR X3 :x t TO (X2 DIV CHAMWIDTH) DO
WRITET{ALANK);
X2 iz X2 MOD CHARWIDTH;
WRITEV(ESC);
unl\‘ENrunst)
R X3
vuTU(BLAIK)
WRITEV(ESC);
WRITE) (FOUR) ;
END

END;

0o

X2 :x 0;
WRITEHC)
EKD
ELSE X2 :x X2 « WE)
€aD
£LSE
FOR X1 :x 1 TO LEN DO

Lines 1852 to 1860 become:

AT,
DIA: BEGIN
WHILE_INCHAR = BLANK DO
REXTCH
CHARVIDTH := NUWBER(S 0, -1, INFINITY, 1073);
1r IOT (CHAAWIDTH 1IN (lo 12]) THEN

EIIOIHOI])
CMAIHDTN 1s 10

¥ (n':lnllALr"E * DIA) AMD {CHARWIDTH &« 12) THEN
WRITET(ESC);
WRITEV(US);
VRITEV(FF)};

END;
CHAMIDTH :2 60 DIV CHARWIDTH;
OUTLINE(1).NBY :x LEFTMAAGIN ® CHARWIDTH
END

(Write out the HM1}

Lines 3839 to 3AR0 becowe :

1F EAAORS THENW WATITELN (' PROSE ERRORS DETECTED.');
IF (TERMINALTYPE = DIA) AWD (CHARWIDTH = 5) THEN

BEGIN

Hlssn PLTCHE
WRITEI(ESC);

unn‘i!(w

END
END. | PROSE |

The version of Prose published in PN # 15 contains
a bug concerning index entries. If an index entry is
underlined, Prose starts referencing the NIL pointer.
The problem is that the function UPPER returns an in-
correct value for underlined characters. A new UPPER
function is introduced in the SORT procedure.
Lines 2169 to 2170 become:
x : INTEGER; { GENERAL INDEX VARIABLE 1]

‘ UPPER - SPECIAL VERSION OF UPPER,
. UNDERLINED CHARACTEAS,

DOES OT RETURN

. PARM CH s« CHARACTER TO CONVERT TO UPPER CASE.

FUNCTION uPPﬁN cH
BEGIN [UPPE
I onmcu Dlv ma) THEN

o ASCIEX) : ASCIIK;

28;
iF cuss(c») LEFTEN ThEW
1F CH >s SMALLA THEN
UPPER 1z CH - 32
ELSE
UPPER is CH
ELSE
UPPER :s CH;
END (UPPER};

BEGIN | SORT)

1 encourage all Prose users to send their changes
to Pascal News. With such an excellent tool it would
be unfortunate if widely varying versions were to start
appearing.

Yours truly,
David J. Greer

A N . . on 5

The Use of Generic Capsules
with the
University of Minnesota Pascal 6000 Compiler

by Frank L. Friedman
Alessio Glacomucci
Carol A. Ginsberg
Anita Girton
Temple University

L. INTRODUCTION

This document contains a description of a data
type absrracuon facility, a capsule, that has been im-
d as an ex ion to the University of Min-

nesota Pascal 6000 Series compiler. The facility pro-
vides an encapsulation that establishes a static scope
of identifiers with controiled visability. Data objects
and a set of operations on these objects may be en-
closed. The document is intended to provide sufficient
information for those who wish to use the general cap-
sule facility and library. A more complete description
of capsules may be found in the paper ‘*Capsules: A

Department of Cornputer and Information Sciences,
Computer Users Document 81-01, February, 1981, Rev.
1, September, 1981, Rev. 2, December, 1981

16

Data Abstraction Facility for Pascal,”” CIS-TR 81-01,
Temple University C & IN SC Department Technical
Report.

II. WHAT IS A CAPSULE?

A capsule is an additional Pascal type which is syn-
tactically similar in structure to the Pascal record. The
syntax diagrams for the Pascal type definition (with the
capsule added) may be specified as

type
definition

Software Tools

ype

ox e ates

The export list is a list of variable, procedure and

function identifiers which may be referenced outside
. the scope of the capsule All protection of the data ob-
—* scaler type i* jects psulated in the capsule is provided at compile
time. Thus, if capstype is a capsule, and the variable X
is declared to be of type capstype, then all external ref-
-—i type Ir to identifiers, id, appearing in the export list for
—-* pointer type |L
——-i capsule type }—

capstype must be of the form
Xsid
Exported variables are read only, and identifiers not
appearing in the export list may not be referenced out-
side the scope of the capsule. There is no explicit import
facility, such as provided in Modula and Euclid.
The Pascal scope rules for capsules are the same

niind m’e as the rules for all other Pascal objects. Only a single
copy of the operations (p es and functions) de-
mo,d .yp, fined within a capsule is created, regardiess of the num-

ber of variables declared to be of the capsule type.
When a procedure (or function) containing the decla-
ration of a capsule-type variable is called and the var-
iable declaration is elaborated, the capsule’s global var-
iables are placed on the runtime stack as a record. This
record remains on the stack as long as the called pro-
cedure (function) remains active. Openniona on the
abstract ob;ects are thus performed via calls of the ap-
4 or functi

. . priate
The capsule type is defined by the diagram exampl ot‘n lein eterized (generic)
::-Psule form is shown in Figure 2. An illustration of the use of
ype . f .
@ —xport declaration o this capsule is shown in Figure 1.

{A non-recursive expression parser}

e
° Al 197 (*capstk'/"capeall’, charstackl0,20, char)’
) -

B.
e O

C. begin

s
b.
suckswp Sri;hmpcrnd) ;

stackipop (operator);

constant declaration

T stack: charstackl0;

(initialize} stackSinit;

stack$pop (leftoperand)

H = tparer
g
Use of a simple stack capsule
E. capstk
F. {pname, psize, puype) {list of capsule parameters}
pname = capsule

with the export declaration defined as

{stack capsule definition (in generic fom)

.
export .
declaration * parsmeters:
L] -
pnase - name of capsule
EXPORTS ° m o * psize - mmber of cluments in the stack
‘) ptype - base type of stach arruy

Software Tools 17

L rvy

G, exports (pop, push, iriti: {eaperted ldentifiers)
upe stackpointer = v..rsize;
H. var {glcal capsule variables!

a: arrav [l..psize] of ptype; fatach®
top: stackpeinter; (pointer te ton of stack:

Tocedure pop (var item: ptipe);
pop an iten of the stack and s<ave in jtem)

end (pop)
srocedure mish (item: ptipe);
(el item ente - tacky
g_l_n! {pushy:
1. precedure imit;
(perfoms required initializatien of gocbal dhoectss
bepin

top = O
end (init;

J. procedure rrint;

{print out the data)

begin
ey TF(* PTYPE® = "REAL") THEN)
wTiteln (datavalue:$:2)

(@SY ELSEIF ('PTYPE' = *INTHGER')*}
writeln (datavalue:$);

{#$Y ELSE insert the next line to inform user of errora)
to the user: ptype must be type integer or real, only.

{ *SY BNDIF*)
end (print} ;

end {generic form of stack) ;

Figure 2:
Stack capsule: generic form

The major features of the capsule facility are in-
dicated by the letters A-H in the left hand margins of
these figures. These features are discussed next.

A. Generic (Parameterized) reference: Generic refer-
ences in a Pascal program are processed by the Ge-
nerics Preprocessor (see Section I1I). This program
searches a library of generic capsules (capsall in this
case) for the named capsule record (capstk), and
copics the capsule text into the program, substitut-
ing the designated arguments (charstack20, 20 and
char) for the generic parameters (pname, psize and
ptype) listed in the capsule header (see¢ line F.). The
syntax for specifying a reference to a generic cap-
sule is pattermned after the syntax for the INCLUDE
facility provided by the Minnesota Pascal
Compiler.*

B. Instantiation of a data element of type charstack20
all about one stack: This creates an instance of the
capsule: a copy of the global variables of the capsule
will be placed on the run-time stack when this dec-
laration is elaborated during execution.

C. Call to initialization: The global capsule variable,
top, will be initialized t0 zero when this call is
executed.

+See ;l;erij-nivcrsity of Minnesota Pascal 6000 Release
3 document.

18

D. References to exported identifiers: An exported
identifier is referenced by prefixing it with the cap-
sule name followed by a dollar sign.

E. Capstk is the name of the capsule record as refer-
enced in the generic statement (see A.).

F. Capsule Parameter List: Generic arguments (char-
stack20, 20 and char in this case) are substituted for
the parameters (pname, psize and ptype) each time
the capsule is referenced in a generic statement. As
illustrated in the capsule header st tin the line
following the parameter list, the use of the param-
eter pname permits the user to assign different
names to cach different stack capsule that is needed.

G. Export list: The export list is a list of all capsule
identifiers (variables, procedures, functions) that
may be referenced from outside the capsule.

H. Declaration of global (permanent) objects: For each
variable declared to be of the capsule type, a copy
of these objects is placed on the run-time stack.

L. The initialization procedure: If the initialization of
global capsule data is required, such a procedure
must be called explicitly by the user for each de-
clared instance of the capsule.

The examples in Figures 1 and 2 also illustrate
some of the shortcomings of the current capsule imple-
mentation. For example, there is no provision for the
automatic execution of initialization statements, such
as provided in Concurrent Pascal. There is also no pro-
vision for the direct specification of variable initializa-
tion in a declaration, a feature that is provided by Ada,
Euclid, and CLU. Rather, any initialization required for
the encapsulated data object must be done via an ex-
plicit reference to an initialization procedure (such as
init) defined within the capsule.

HI. GENERIC CAPSULE PREPROCESSOR
A. Introduction -

The Generic Capsule Preprocessor (GCP) is a pro-
gram that may be used to allow a programmer to insert
Pascal source text anywhere in a Pascal source pro-
gram. The GCP is patterned after the Pascal INCLUDE
facility (see the document Pascal 6000 Release 3) and
is used primarily for the insertion of Generic Capsules
into the type declaration section of a user program, pro-
cedure, or function.

B. Use of the GCP

1. To use the GCP, the programmer must first create a
capsule library cither in the form of a sequential file
of capsules [with each capsule separated by an end-
of-record (7/8/9 or *EOR], or a user library file of
capsules (using the CDC Modify source library
maintenance system).

If the sequential file approach is taken, the file
must appear as shown in Figure 3. Such a file may
easily be created and maintained using SENATOR
(see TUCA documents E601 or E602).t For large
collections of capsules, the CDC Modify system is

tTemple University Computer Activity, introductory

and advanced level documents on interactive
computing.

Software Tools

recommended for creation and maintenance of the
capsule library (see the CDC Manual on Modify for
additional details).

In Figure 3, the first line of eachrecord indicates
the record name. The second line contains the list
of parameters (n: < 9) to be replaced when the cap-
sule is copied from the library. If there are no pa-
rameters, this line may be omitted.

recnami
(parl, pary, ... par ;)

capsule body

*EOR

recnam2

(parl, pary, parnz)
capsule body

*EOR

Figure 3:
Structure of a Sequential File of Capsules

2. Capsules may be retrieved from a capsule library
(and copied into a Pascal moduie) through the use
of the Pascal G compiler option:

$G(‘recnam'/‘libfilnam’)

or
$G(‘recnam’/*libfilnam’, arg., arg’i2, ..., argy)
where
= recnam — the name of the capsule record to

be inserted

« libfilnam — the name of the capsule library
file containing the record

* arg, ..., argy, — the actual parameters to be
substituted (via text string substitution) for
the d y par s in the definition of the
capsule record.

Remember that Pascal compiler options must be in-
serted inside a comment, and may contain no blanks.

3. Example

The generic stack capsule shown in Figure 2 con-
tains three parameters, pname, psize, ptype which can
be used to specify the capsule name, the size of the ar-
ray to represent the stack, and the type of the infor-
mation to be stored in each element of the stack.

When encountered by the GCP, the statement

(*$G('capstk’/*capsall', charstack20, 20, char)*)

causes an instance of the stack capsule to be copied into
the user’s text at the point of reference. During ghe
copy, each occurrence of the parameters pname, psize

Software Tools

and ptype would be replaced by the corresponding ar-
guments, charstack20, 20, and char. The result, in this
case, would be a capsule named charstack20 which
uses a 20-clement array of elements of type char. Given
this capsule definition, variables such as x,y,z declared

var x,y,z; charstack20;

would represent character stacks of size 20 which could
be manipulated using the pop, push, and init functions
specified in the capsule.

The reference

(*$G(capstk’/ capsall’,instack 1000, 1000,integer)*)

could be used to establish a capsule definition for a
stack consisting of an array of 100 integers. The
delcaration

var w,z: intstack1000;

would establish variables w and z each representing in-
teger stacks of size 1000.

C. Restrictions snd Other Comments
1. A generic reference $G... may not be the first state-

ment of an input program, since a program statement
is expected here.

2. Only one capsule library file may be accessed at a

time.

3. If no substitution is desired for a particular param-

eter, par;, in a capsule record, use a nuil argument

indi by consecutive commas) in the position

corresponding to par;. Thus
$G('capstk'/*capsall’,charstack20, char)

would have the effect of leaving psize untouched

when the stack capsule is copied into the user

4. No capsule parameter (appearing in a generic cap-

sule record) may exceed 10 characters in length.

5. A maxi of 9 par s is allowed for a given

generic capsule.

D. Use of conditional inclusion within a capsule
1. a. Any conditional statement may be included within

a generic capsule which is part of a capsule li-
brary. There must be at least one capsule param-
eter which will be the basis for testing the con-
dition. A conditional statement must never
precede the capsule p t, but it
must procede the EOF marker of the capsule
within the hibrary. (Refer to Fig. 2, the stack
capsule).

b. The permissible conditional statements may be-
gin with only one of the following: ‘IF’, ‘ELSE’,
‘ELSEIF’, ‘ENDIF’. One ‘endif’ staterient is
required for ecach ‘if’, statement. No ‘clseif”
statement may logically follow an ‘clse’
statement.

¢. The only relational operators permitted are as
follows:

= < > <= >= < >

d. No blanks are permitted in the formal part of the
statement, except the one which follows the 'Y’

19

S A {

as noted in part 2 below. Alternatively, the space
may be used to note the level number of nested
statements, for readability.
2. Conditional inclusion of text within a generic cap-
sule may be instituted through use of the PASCAL
Y compiler option:

$Y keyword
or

$Y keyword (‘paramname’op' paramvalue’)
or N

$Y3keyword
or

SYJkeyword (‘paramname’op‘ paramvalue’)
where
« keyword — the word IF or ELSE or ELSEIF
or ENDIF.
¢ paramname — a parameter name, exactly as
it app s in the capsule par ter list.
* op — one relational operator chosen from the
set:

=< >,<,>,< =,>=

(Note: ONLY = and < > may be used in com-
paring alphabetic operands).

« paramvalue — a parameter value to be com-
pared against the corresponding argument in
the generic capsule call statement (3G
statement).

Remember that the Pascal compiler option must be
inserted within comment markers, and may contain
no blanks except as specifically stated. User com-
ments may immediately precede the closing com-
ment marker.

3. Remarks

The generic stack processing capsule in Figure 2
provides an example of the use of conditional inclusion.
As shown, the condition inclusion feature was used to
determine the type of data to be printed by procedure
*print.”" The feature may also be used to restrict the
use of a capsule based on a capsule user’s knowledge
of parameter values. At times, the feature may be uti-
lized to insert a variety of comments in the output pro-
gram, depending on substituted parameter values.

The form of the conditional statement which in-
cludes a numerical digit following the ‘Y’ may be used
to help distinguish among IF-THEN-ELSE statements
which are nested. For example:

(*SY1IF('PTYPE'="REAL')THEN®)

" (+SY2IF('PCOLORS' '9')4)

(*$YZELSE*)

(#$YZENDIF of color checkings)
(#$Y1ELSE®)

(*$YIENDIF*)

ACKNOWLEDGEMENT

The authors would like to thank Professor Giorgio
P. Ingargiola of thc Temple Computer Scnence Depart-
ment for many helpful s and sugg con-
cerning the design of the capsule facility.

BIBLIOGRAPHY

[Barnard 78] Barnard, David T., W.D. Elliott and David
H. Thompson, ‘‘Euclid and Modula,”’ SIGPLAN
Notices (13,3), pp. 70-84, March, 1978.

{Brand 78] Brand, D. ‘‘A Note on Data Abstractions,”
SIGPLAN Notices (13,1), pp. 21-24, January 1978.

[Brinch-Hansen 75] Brinch-Hansen, P., ‘*The Program-
ming Language Concurrent Pascal,”” IEE Transac-
tions of Software Engineering (1,2), June 1975.

[Chand 78] Chand, D.R. and S.B. Yadav, *'On the Ap-
plications of Data Abstraction Facilities,”’ Proceed-
ings of the 1978 ACM Annual Conference, Decem-
ber, 1978, pp. 639-645.

{Chang 78] Chang, E., N. Kaden and W. Elliot, ** Ab-
stract Data Types in EUCLID,” SIGPLAN Notices
(13,3) pp. 34-40 (March, 1978).

[Coleman 78] Coleman, Derek, A Structured Approach
to Data, The MacMillan Press Limited, London,
England, 1978.

{Dahl 72] Dahl, O.J. and C.A.R. Hoare, ** Hierarchical
Program Structures,” in Structured Programming
by O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare,
Academic Press, 1972.

[Dijkstra 72] Dijkstra, E.W., ‘' Notes on Structured Pro-
gramming,’’ in Structured Programming, by O.J.
Dahl, E.W. Dijkstra, and C.A.R. Hoare, Academic
Press, 1972.

[DoD 79] DoD, “‘Preliminary Ada Reference Manual,”*
SIGPLAN Notices (14, 6A), June, 1979,

[Friedman 79) Friedman, Frank L. and Judith A. Ste-
bulis, **An Undergraduate Compiler Laboratory,”
SIGCSE Bulletin (11, 1), February, 1979, pp. 28-36.

[Girton 81] Girton, Anita, ‘' A Generic Capsule Prepro-
cessor’” (in progress).

[Halstead 77] Halstead, M.H., *‘Elements of Software
Science,”” Elsevier Computer Science Library, 1977.

[Horning 75] Horning, J., **Some Desirable Propertics
of Data Abstraction Facilities,”” Proceedings of the
Conference on Data: Abstraction, Definition and
Slru&l)l.zre, SIGPLAN Notices (8, 2), March, 1976,

62

[Ichbiah 79} Ichbiah, J.D., et. al., ‘‘Rationale for the
Design of the Ada Programming Language,”’ SIG-
PLAN Notices (14, 6B), June, 1979.

[Lampson 77} Lampson, B., et. al., ‘‘Report on the

Software Tools

Programming Language Euclid,”” SIGPLAN No-
tices (12, 2), February, 1977.

[Linden 76] Linden, Theodore, ‘*The Use of Abstract
Data Types to Simplify Program Modification,”
SIGPLAN Notices (8, 2), pp. 12-23, March, 1976.

[Liskov 74] Liskov, B., **A Note on CLU," in CLU De-
sign Notes, Project MAC, MIT, Cambridge, MA.,
1974.

[Liskov 77 Liskov, B., Snyder, A., Atkinson, R. and
Schaffert, C. “Absuacuon Mechamsms in CLU,”
Comm. ACM, Vol. 20, No. 8, pp. 564-576, 1977.

[Llskov 77 Liskov, B., et. al. *‘CLU Reference Man-
ual,”” Computation Srructures Group Memo No.
161, Lab y for Comp MIT, Cam-
bridge, MA., 1978.

[McCabe 76) McCabc T.J., ' A Complexity Measure,”
1EEE Transitions on Software Engineering, SE-2
(4), pp. 308-320, 1976.

[McCall 80} McCall, J.L., and M.T. Mntsumoto, “Soft-
ware Quality Metrics Enhancements,” General
Electric Company/Rome Air Development Center
Final Technical Report RADC-TR-80-109, Volume
I, April, 1980.

[Mickel 79] Mickel, Andrew B., ct. al., Pascal 6000
Release 3 Document, Umverslty of anesota, Min-
neapolis, MN, January, 1979.

[Palme 76] Palme, J., *‘New Feature for Module Pro-
tection in SIMULA ** SIGPLAN Notices, Vol. 11,
No. §, pp. 59-62, 1976.

[Shaw 78} Shaw, Mary, et. al., **Validating the Utility
of Abstraction Techniques,’ Proceedings of the
ACM Conference, Washington, D.C., pp. 106-110,
December, 1978.

[Sheil 81) Sheil, B.A., “The Psychological Study of
Programming,”’ ACM Computing Surveys (13, 1),
March, 1981, pp. 101-120.

[Venema 78] Venema, Ted and Jim des Rivieres, **Eu-
clid and Pacal,* SIGPLAN Notices, (13, 3), pp. 57-
69, March, 1978.

[Yin 78] Yin, B.H., and I.W. Winchester, **The Estab-
lishment and Use of Measures to Evaluate the Qual-
ity of Software Designs,’’ Proceedings Software
Quality Assurance Workshop: Functional and Per-
formance Issues, San Diego, November, 1978.

{Wegner 791 Wegner, Peter, **Programming with Ada:
An Introduction by Means of Graduated Exam-
ples,” SIGPLAN Notices (14, 12), pp. 1-46, Decem-
ber, 1979.

[Welsh 80] Welsh, Jim, and Michael McKeag, Struc-
tured System Programming, Prentice-Hall, 1980.
[Wirth 71] Wirth, N., *The Programming Language

Pascal,”’ Acra Informanca 1, pp. 35-63, 1971.

[Wirth 76] Wirth, N., Algorithms + Data Structure:
= Programs, Prentlce-Hall 1976.

{Wirth 77) Wirth, N., *Design and Implementation of
Modula,” Software — Practice and Experience (T),

pp. 67-84, 1977.

Histogram Capsule
(from Dahl and Hoare — [Dahl 72])

WIS THoR

CFMAME s PHIICATS s L TENT YEE s PRNDTYPE)

PNARE o CAPSINE

« 3

(SUBNSERENE HISTNORAN CAFSULE FRSNassons)

Software Tools

C-ENF 1) s TR B2 o LBZoB3)0 (LN 1o RN) rLBNL 4 IWF)

NIBTOGRAN OPENAIOKE --

INED - INTTIALIZE BUUNDE AKKAY GIVEN THE DOUNDARIES
OF CATEQORIES (OF TYPE PBNDTYPE) . AND CLEAR
FREQUENCY ACCLIMILATOR ARKA

TABNLATE - DETERNINE CATEGORY OF BIVEN TTENTYPE 1TEW aNp
INCHEMENT FREQUENCY COUNT OF THAT CATEGORY

FREQUENCY - RETURN INTEGER FREQUENCY COUNT FOR BIVEN CATEGORY

PRINT - PRINT TABE OF CATEGORIES,FREGUENCIEY AND RELATIVE
FREQUENCIES .

SENENTC PARARETERS -—

PHANE - NARE OF €

PHUNCATS ~ NUNBER OF CATEGORIES (PARTITIONS) RIMUS &
THIS 1S THE GANE AS THE NURBER OF LOMER BOUNDS

ITENTYPE - TYHE OF VALUE Bt Imi CLASSIFIED [A SCALAR].

PINDTYPE - TYPE OF THE STRUCTURE HOLDING THE BOUNBAKY VALUES

¢ ADAPTED FRON THE DANL JHOARE PAPEN ‘HIERARCHICAL PRODRAN STRUCTIMES
® UN THE DAML/S1IRSTRA/HOARE TEXT ON STRUCTURED FROGRAARING
.

"
FXPORTS (TAMNATE . FREQUENCY (PRINT INIT) S
CONBY N = PHUNCATS)
TYPE RANOETEROTON = 0. .M}
FREQARRAY = ARRAYCRANGEZEROTON} OF INTEOERS
(3 GLOBAL CAPBLL E VARIARLES)
VAR BT PRWBIYPES (SARRAY OF LOMER SOUNDE ¢ OR EACH CATEGORY 0..M -
BCO) = -INF = LOWER BOUWD OF CATEUORY O
BCIY ~ LOMER BOUND OF CATEGOKY 19
BEND = LOMER BOUND OF CATEGORY NS}
FREQS FREDARRAYS (SARRAY OF FREQUEWCIES. ONE FOR LACH OF

CATEGORIES O..4%)
TOTALCOUNT! INTEGERS (STOTAL COUNT OF TTERS PROCESSEDS)

(98388 PROCEBURE TABULATE sa838)

PROCEDURE TABULATECITENI ITENTYPE D)

‘: SETERNING CATEGORY (13 FOR ITRN AND INCREMEW! Firwrl) bY 1
. AROUMHENT BEFINITIONS ---

L] Twruy Ll
. LFEN - TIRN 10 BE CATRGORIZEN
»
LADEL SO0
TeJt THTEQERS

FREGUS) = FREGLIIHLS
6010 30

[l
(PELSE LAST
ruu(n) e muuuu
w’ - TOYALCOUNT¢2 4
muruuuu
(08888 PROCENVAL PALINT s8eRs)
PROCEDURE PRINTS

i
o PRINT A TABLE W1TH CATEGORIES ON LEFT AND FREGUENCILS IN
§ CENTER AN RELATIVE FRESUENCIES ON RIGHT.

.
- AROUNENT DEF INTTIONS —- (MOWE)

PROCEDURE EXPECTY TABLE WEADEKE 10 HAVE DEEN nunlu- ALREADY .
: 1T PRINTS A THREE-COLUNN TABLE WITM COLUMN HEA

n EACH LIME OF THE TAWLE APPLARS AS FOLLUME -
»
(8 CLOWBOUND, HIDOUND) FREQUENCY RELATIVE $RLOUENCY)

CONSY LVAR = ©
KA =
KORACK

.
'

I
comma = oc 1
LORACK « ‘)

VAR 13 INTEDERS
"aln

T O CATEGORY RANGE
¥

20
MRETELMEEREDUENC u(uth FREQUENCY)

ORITEL -
1 ‘ 4 19y (1313012, 0PAN) 1
unlvu' SFREGEOII10 20
—prELw “s (FRLUCO I/ TOTALCOUNT IS 101 430
Fox ll- 1 To #-1 DO
_oin
WRITEC” “oLDRACK,BLITI1012.CONMABEIH] JI1012/RPAR, " e
WRITELNCHFREQLTITIO,
P SFNEQL) I/ TOTALCOUNT Y £1014)

ENpr (sFOR W)
WAITEL .Lnﬂk.uu:uo:z.:m I oAPARY 1
MRITEL: “oLEMR, COMNALBCLTS 10 RPAR) S
wRITEC” FREDLOII10 10

WRTTECN" “+(FREO[OI/TOTALCOUNT) 11024 31

FOR It | TO N-1 DO
LT10)

MRITEC: * sLBRACK BL1T310.COMMIBLL#1II10 RIAKS " Y]
nnumr«(muuo.
T CFREQTTI/ TOIALCOURTI L1014
END) (SFOR IR}
welvECC ACK BTN 1110 CONRA, * 10 JRPAR,
URIIELN(FREQENTEIO +° ‘-(ru:n(u)/lovucumﬂnuaun
WRETELN(OTOTAL ITENS PROCESSED ', TUTALCOUNT!3)
D COPRINTED S

(aBesa FUNCTION FREQUENCY 84388)

PUNCTION | REQUENCY (] TRANGE ZERUTON) T ENTEGERS

I

v RETURNS A FREOUENCY COUNT FOK LATEGOKY Ir O.m[<ap
»

* ARGUMENT UEH INTTIONS -
2 INFUI ARGUMENTS
. I - 1NDCX IF FREGDENCY CATEGOKY Ti) RE RE TURNED
.
I
OGN
FREQUENLY tx bREOCL)
ENLC OO REOQUENCY®) &

faeRBe FROCE MMt INIT &

)
EROCEIIKE TRD 1 (B X TRUUNBAKKAY L PBNDT YEE)

Iy
€ INTTIA I7E ROUNDAKY AKKAY BLO..NJi SE1 FKEH ARKAT ANTU
. TOTAL ClHNE TO ZEK

.
B AKGURENT FEFINITIONS --
. £ AREHIENTS

) EXTRUNDARKAY - AKKAY F BOUNGS THAI DEFINE THt CATEGURLES

vaK T1 INIRGENS

EREUCLL 1o 08
Ml NINETE)
END CBENARE (HISTUGKAR) CAPSILE®))

Sort Capsule
(with conditional insertion directives)

CAPSORT

(PMANE +P TYVE s PEUBRANGE - P T RUC TURE -PDIRECY 10N PREY)
FNANE © CAPSULE

SORT CAPSULE DEFINITION (IN GENERIC FORN)

.

& AUTHORD CARGL A. BINSMERG

4 PATE CONPLETEEI MAKLH o AV82

® LAST DATE RODIFIED! NARCH 5+ 1982

& SORTS DATA IN ASCENDING ORDEN (IF FOIRECIION = ‘UP‘) OR

4 PESCEMDING ORDER (IF PIIRECTION = “DOWN') USING A SINPLE

» SELECTION SOR

 PAMARETER DEFINITIONS - -

. PHAML - NAML OF CAPSULE

. PIYFE - BASE 1TFE U AKRAY TU ki SORIED

3 UBRANGE - TYPL (RANUED UF INDEX 10U AKRAY DEING SORTED

. PRIRUCTURE - ENDICATRS 1F MASE TYPE I8 "SIMFIE- UK ‘RECUKD:

. 1YPE. 1F CSIMPLE 1S NUT DESIGMATED: THEN “RECURD '
. IS ABSUMED.

. PUIRECTION - INGICAIOW 1F SUKT IS 1U Bt ABCENDING OR DESCENDING
. Dk K.

. FRET - MANE OF KELOKD REYHIELL (REUUINED I1F ARWAY ELEMENTS

. ARE RECORDS)

.

LXPOKIE (YOKIS
ITFE DAIIYHE = ARKAYLESUPNANGE] OF PTTPEH

<8 THEME ARE NO GLOBAL VARIAMES REQUIRED FUK THIS
CAPSULE. BUT DNE DRIWNY VARTABLE MUST BE DECLARED.

"
VAR DuMnY1 IMTEDERS

Fnu(tm SORT (VAR X! NYMMNIC LATTYPES FIRST-LAST:FSUBRANGE 4
o SORT DATA USING A SINPLE SELECTION SOKT
]

s ATA 15 PLACED IN PRLRECTION DRDFR
TUP « ASCEMPING) (DOMN - DESTCENDING)

»a

5 ARGURENT n:rlnlnom -
1eyT
5IISV-LASV - IMI mn UPPER LTMITS OF INDEX TQ X ARRAY
- TO PE SORTES

.
.
rapEL 99
1YPE

INDEXTYPE ~ PSUBRANGE 3
UaR 1501 INDEXTYPES (SLOOP CONTROL VARIABLE

TEAPS PTYPEI (STENPORARY VARIABLE FOR € XCMANUES
IX] INDEXTYPES (SINDEX OF LARUEST ON SAMLLEBT Tren 10 tach scans)

»

22

BEGIN (WSORTS)

tarn
WHIELN (COSUK) LALLLD MLTH §IRST e LAST)
WREITELN ¢° NO SUKI PLKFOKMLD. ')
6ara 99
ENUI 3 11 18 VALINAFE NE)
(SSORT DATAN)
FOK I ts 1K1 10 PREVILAGT) DO
BEUIN (3FIND LARGEST (DR SHALLEST) ITEM BETNEEN XCU1 AND XCHI®)
te 1
FOR J:=SUCCLI) 7O LASY DO
YIIF(POIRECTION' = UP) THEN &)
(ESY2IF O PSTRUCTURE “» " SIAPLL I THEN 8)
IF X{J1 < XUIND

33 a

CSSYELBES) i

¥ x(n PKEY ¢ XCIXI.PKEY

jal M ;
COSYZENDIF) . i

CUSYIELSETF « ‘PBIRECTION = DOWN’) THENS)
CHBY2TF (' PSTRUCTURE “= ' SIAPLE) THENS)
IF X(J) > XC€1X)
THE

»
TR
(SY2ELBEN)
IF XCA3.PREYSXCIND . PREY

N
[T
CWOY2ENDIFS)

wnnu('uncmu(cv DIRECIION INDICATOR FOR SORY)
WRITELN(' RECOMPILE CODE WITH CORRECTED SORT')!
WRITELNC* EXECUTION TERMINATED, ‘)¢
BOTO 99 (REQUIVALENT TO ‘MALT 8
ENDS (SIMNER LOOPR)
(SSYIENDIFY)

(BEXCHANGE ELEMENTS I nm 1x8>
TEWP t= XLIX
XCIAD 1= :(nc
XEX) 1w VENP
ENDI (SOUTER LODPS)

Rad]
END (9SORTS} 1
END (SBORT CAPBINLEN})

Stack Capsule

CAPSTA

(PNARE 5] 21
PNARE < CAb
¢)

FIYPE)
[x}

AEREEES STACK CAFSULE #88

11

® PROVIDES COMPIT I RAINTENANCT FOK A STACK
.

* STACA OPERATORS

. EnEty

. 0P

. Punn

* oe1

. e

.

® BENFRIC PAKAM TE R

® X NAME TH LAPSICE

13 FSIZE MUNKEK DF LIFRUNTS [N THS AKKAY DSED A% G1Afs
* FTYFE - BASE IYIE (F GTACK TLERENIS
»

EXPORTS (EMPIYe POFY PUSHO G be INIT)S

O GORAL CAFGILE VARKTAK L S8808)
1 AKKAYEL, PSIZE] DF PIYVES (6 IWE LTACK &)
106 0L PSIZE0 (8 FAINTER 1) TOF OF S1ACR ®)

s

. FUNCT N CRRTY

FUNCTION FRPTY: BOOIFANG
o
© 0 TERMINE IF STAUR TS EMFTY

.
4 ARGUSEMI LEF INT) LONS
2 (NOWE)
"
PEGIN
IF 1F = 0 THEN
ERFIY 1= TRIKE
ELSE
EWFTY t= § MSE
€D}

(S3688 FUNCITON POP SS332)
rm« TION FOP: FIVPES

- ﬂw AN ITEN OFE THE [OF GF 5TACK
- AKGUMENT T4 FTNTTIONS

B Nom

»

HEOTN
TFERFLY IHEN

Software Tools

YOP 1o TOP ¢ 1)
NN PHARE BNB7) ALTOP) i ITEN
)

wEGIN
UKITEI NG RER S1ACR UNDEKFLOW TN CAP!

Kl IELN FUSH LALLED WIIH JOF = 0.7)0
MRETEUNG EXLCOLION TIRAINATED. ©)§ Ewdy
(UOUNE PROCEDUKE GEY #
[
bl . FROCEDURE UET(TOFDFFIETE ENTEGERIVAN BOYTTONIBOOLEANIVAR 1TENIPTYRE)
I 2 .
v it " READ AN 1TEN FROM ARYUMFRE ON THE STACR (BOES NOT ALTER STACK)
.
twpy e . lenl:nv it!lllllol' .-
B INPUT ARGUMEN
lwu(r - unm:avn TME INBEX (RELATIVE TO CURKENT 10P)
. OF THE ITEN 10 DE READ .
taaREs PROCEDURE PUSH & 3 BOTION - IMBICATER 1F ENS OF STACK AR BEEN REACH N
nune phocE . LTEN - SIACK ENTRY PEING KE TUSED
c GTERT PTYPEDS -
:n:mrw-f rusnaLe VAR INBEX: INTEGERS (SINGEX YO ACCESHEING STACK ENTRYE)
01N

a FUSH AN TIER UNTO THE STACR
*

T AMGUMENI UEFINITIIONS - -

INDEX te TOPOFFOKT§
XF CINEX < 1) THEN ROTTOM 1= TRUE
ELGE EGIN MOTTON 1= FALSES TTFM 3= ALINDEX) €MDY

. INPUT ARULIMENTS
* 1fem - BAIA LiEn HU Bt FNIERLD INTO STACK Endt
-
EGIN
" Ilg;l: oL ew (RRASS PROCEUMF INTT B
WRITELNG' R88 STACK OVEKFLOM IN CAFSULE FNARL ss8°))
WRETEC M 1P = STACRSIZE = “o 10P)D PROCFBIME TNITH
WRITELNG EXECUTION TERAINAIET.) (H ANITIM I7E TOP OF BYATK)
o1V
100 1s 08
£Lse Enos
VEGIN EMB (8 CAPSIN CAPMAF 53 PUG
DIRECT INQUIRIES TO:
Beu « Howew
OLD MANSFIELD ROAD
WOOSTER On 44694
) Eitis
Call 10H-kee (800 "
n Ono, cotl (246) 204-6866 coliec!
Software Tools . 23

L r

e AN AT o

A A A

4

A PR A s . s A

D

The 6th Annual PACS COMPUTER GAMES FESTIVAL
sponsored by the
Philadelphia Area Computer Society
and

LaSalle College Physics Department
will be held on the 19th of March 1983
from 11:00 A.M. to 4:00 p.m.
in the LaSalle College Ballroom
located at 20th & Olney
Philadelphia, PA 19141

Featuring Computers in Daily Life
For further information contact Stephen A. Longo,

Ph.D. Physics Department, LaSalle College, Philadel-
phia, PA 19141 Phone (215) 951-1255.

Oh! Pascal!

Oh! Pascal! is a book by Doug Cooper and Michael
Clancy. Doug Cooper is an excellent programer living
in Oakland, California and Michael Clancy directs the
introductory programing courses at the University of
California Berkley.

Oh! Pascal! has been used at many leading uni-
versitics as a basic text book for Pascal. These schools
include University of California (Berkley), Purdue Uni-
versity, Amherst College, Brandeis University, Har-
vard and The Rochester Institute of Technology.

The book is very readable and clearly written. It
contains an emphasis on general problem solving tech-
niques, an carly discussion of procedures, self-check
questions and self-test for each chapter. Anti-bugging
and debugging sections follow each chapter. There are
numerous programing examples of varying difficulty,
including long programs. Interactive programs are
shown in action, the reader isn't forced to infer their
differences from batch. It is 476 pages long and is illus-
trated. The cost is $15.95 paperback.

Oh! Pascal! is published by W.W. Norton & Com-
pany, 500 Fifth Ave., New York, New York 10110.

NEW MODULA-2 VERSION
FASTER, EASIER TO USE

DEL MAR, CA, Nov. 30 — Volition Systems has
introduced a complete software system based on its
fast, easy-to-use version of Modula-2, Niklaus Wirth’s
powerful new programming language.

‘*Modula-2 is particularly suited for large industrial
and commercial applications. It will save software de-
velopers both time and money in program development
and maintenance,”’ according to Joel J. McCormack,
company president. Volition Systems has pioneered
the commercial implementation of Modula-2.

**Our new implementation is faster, more compre-
hensive, and easier to use then the previous release,
which was closely tied to the UCSD Pascal® environ-

24

ment,”” McCormack said. It can also handle larger pro-
grams. The new release, called Version 0.3, conforms
to Wirth's recently published book on Modula-2.

Wirth developed Modula-2 (from MODUlar LAn-
guage) to replacc hls earhcr language Pascal. Whereas
Pascal was d Modula-2
is expressiy deslgned t‘or use in a wide range of real-
world applications. The new language — designed to
utilize standard software modules — offers great flex-
ibility in the de t of large. plex sys!

Volition’s Version 0.3 incl a ive
module hbrary a compller that runs 25 percem faster
than the previous version, and a tutorial designed to
bring Pascal programmers up to speed on Modula-2 in
a matter of hours.

The new version provides all the attractive fea-
tures of Modula-2: low-level machine access, real-time
control, concurrent processes, and type-secure sepa-
rate compilation with automatic version control. *'In-
terrupt handling is fully supported in Version 0.3 — pro-
grammers can now write real-time applications in
Modula-2 instead of resorting to error-prone assembly
language,”’ McCormack commented.

Version 0.3 is available now for systems based on
the 6502 (including the Apple 11 and ///®), 8080/Z80, Tl
9900, and the 68000. Impl ions for other p
MicCroprocessors are expected in early 1983 Mc-
Cormack noted.

The most significant feature in Version 0.3 is the
standard library, a collection of modules that offers fa-
cilities normally provided by an operating system. The
library provides console 1/O, random access files, disk
directory operations, format conversion, strings, dec-
imal arithmetic, storage management, program execu-
tion and process scheduling.

The standard library provides a portable interface
to underlying operating systems. Volitions' current
Modula-z system interfaces to UCSD Pascal. Modula-

ions for other popular operating systems
will be available in 1983.

**With Modula-2, you can develop portable soft-
ware systems that run without change on a number of
different operating systems,”” McCormack said. **This
should be of obvious interst to software developers
faced with writing applications which must run on all
of today's popular operating sy

The Modula-2 system also provides access to sys-
tem-dependent facilities. For instance, Apple users can
integrate their existing Pascal and assembly software
into the Modula-2 system. And Modula-2 gives them
access to the AppleStuff and TurtleGraphics units.

A major goal of the new version was to make the
compiler more useful for program development,
McCormack said. It can compile larger programs than
Volition’s previous version and it can compile existing
programs 25 percent faster. In addition, the compiler
provides conditional compilation facilities and im-
proved error handting.

Modula-2 Version 0.3 is available now from Voli-
tion Systems. The complete Modula-2 system includes

Announcements

a fast one-pass compiler, p-code interpreter, module
library, the Advanced System Editor (ASE), Pascal
compiler, and a complete set of utility programs. The
system is proced at $595.

A smaller configuration is available for the Apple
II and /// running Apple Pascal. This system includes
the Modula-2 compiler, interpreter, and module library.
It is priced at $495. Educational, retailer, and distrib-
utor discounts are available.

Volition Systems concentrates on systems soft-
ware development and on research and development
in hardware and software. Since the company was
founded in 1980 n has been a leader in the implemen-
tation and d ion of the Modula-2 language and
other high level languages and in the design and devel-
opment of advanced computer architectures.

For further information contact: Volition Systems,
P.O. Box 1236, Del Mar, CA, (619) 481-2286

TICOM OFFERS THE UCSD P-SYSTEM ON TWO
NEW MICROCOMPUTERS

TICOM, developer of integrated office manage-
ment systems for micro computers, is now the exclusive
distributor of the UCSD p-System® on the DEC Rain-
bow 100, and the NEC Advanced Personal Computer
(APC). A p-System veteran of four years, TICOM adds
these systems to their current list of UCSD p-System
based applications packages and development systems
for a variety of microcomputers, including the IBM PC
and the Xerox 820-11.

TICOM will offer both development and run-time
systems as well as its integrated office management
software package, FINAL COPY*, on the APC md the
Rainbow. FINAL COPY bi word p
data entry, records processing and remote communi-
cations in a single package. This is the same system that
has been offered by TICOM on the IBM PC since Jan-
uary 1982.

These products are now availble directly from TI-
COM. They will be shown on the NEC APC, DEC
Rainbow, IBM PC, Xerox 820-11, and the Texas In-
struments Business System 200 at COMDEX 82 in Las
Vegas, Nov. 29-Dec. 2 in the TICOM, booth #969.
Demonstrations on the NEC APC will also be available
in the NEC booth, #1734,

TICOM is no newcomer to the p-System. They in-
itially implemented p-System software packages on
multi-user minicomputers in 1978. Taking full advan-
tage of the p-System’s high degree of transportability,
they later adapted it to several different
microcomputers.

One additional feature offered on the NEC APC is
a graphics implementation. ‘*To completely utilize the
APC’s extensive graphics hardware capabilities,” Mi-
chael Hadjioannou, president of TICOM explains, *‘we
have implemented a SIGGRAPH Core compatible set
of routines which are callable from UCSD Pascal. Soon
to be added will be the ability to access graphics func-
tions with the Presentation Level Protocol (PLP) or

O R R, T

Modula 2, Niklaus Wirth’s newest programming
language, will also be demonstrated on the XEROX
820-11 at the TICOM booth. It, too, is available from
TICOM.

For more information stop by booth #969, or con-
tact TICOM at: 13470 Washington Bivd. #207, Marina
del Rey, Ca. 90291, (213) 827-7118. Dealer inquiries are
welcomed. All press hould be di d to
Lyna Anderson.

*UCSD p-System is a Trademark of the Regents of the
University of California.

*FINAL COPY is a Trademark of TICOM SYSTEMS,
Inc.

EDISON AVAILABLE FOR
THE IBM PERSONAL COMPUTER

The Edison system is a portable software system
for personal computers written by Per Brinch Hansen
and described in his book ‘‘Programming a Personal
Computer”” (Prentice-Hall, April 1983).

The Edison system supports the develop of
programs written in the programming language Edison
— a Pascal-like language that supports program mod-
ularity and concurrent execution.

The Edison system includes an operating system,
an Edison compiler, a screen editor, a text formatter,
a print program, and an assembler written in the Edison
language

The program text and portable code of the software
are available on diskettes for the following
microcomputers:

IBM Personal Computer PDP 1123 Computer
32 K words and (or LSI 11) 28 K words

Keyboard Dual 8 Diskette Drive
Dual 5% Diskette Drive RXO02 (or RX01)

single (or double) sided Terminal
Monochrome Display VT 100 (or VT 52)
Printer Printer
Display/Printer Adapter

The software can be edited and recompiled on
these machine configurations. It can also be moved to
other similar microcomputers by rewriting a kernel of
2 K words.

For more information on the availability of the
Edison system and the book, please write to:

Professor Per Brinch Hansen
Computer Science Department
University of Southern California
Los Angeles, California 90089

JRT PASCAL

Since May, when we slashed JRT Pascal’s price
from $295 to $29.95, we've added over 10,000 new cus-
tomers! — and we expect to reach 25,000 by year-end!

Needless to say, we're grateful for the deluge of

Turtlegraphics, making it easy to transport grap
applications to the NEC APC.”

Announcements

orders. To handle it has taken a new office, new per-

28

sonnel, and new shipping systems; even then, the mass
of orders — a fifty times increase — caused some de-
lays. If your order didn’t arrive quickly, thank you also
for your patience. We believe you'll find JRT is worth
the wait.

With the new capabilities, the goal of a one week
order turn-around is now in sight.

Note 1: Five and a quarter inch disk versions

Requiring only 85K of diskette space for the com-
piler and 35K for the run-time system, JRT is currently
the most compact Pascal available for CP/M systems.
For program development in JRT Pascal on computers
with five inch disk drives, we recommend this file
arrangement:

On disk A: On disk B:
& EXEC,COM & JRTPAS2.COM
¢ your editor e PASCAL.LIB
(ED, Wordstar, etc.) o PASCALOQ.INT
¢ the Pascal source program e PASCALIL.INT
being developed e PASCAL2.INT
e PASCAL3.INT

® PASCAL4.INT

IMPORTANT NOTE — The file PASCAL.LIB must
always be present on the computer system when com-
. piling or executing programs.

Note 2: Patch #1

Applicable version: 2.1
Error: multiplication of real

A>DDT EXEC.COM

numbers by 0.0 produces incor- gg}&’ E(l:{s 22
rect result 5B00 0100

Patch procedure: Use CP/M pro- -8563C
gram DDT to patch EXEC.COM

— key in underlined code. S63C ED EB
563D 53 ,
-GO
A>SAVE %0
EXEC.COM.
Note 3: Patch #2
Applicable version: 2.1 A>DDT
Error: Message ‘Source file not JRTPAS2.COM
found’ when compiling under
CP/M ver 1.4 or CDOS gg;—l‘-’ggs 22
Patch procedure: Use CP/M pro- 5500 0100
gram DDT to patch -A2B9
JRTPAS2.COM — key in under-
lined code. 02B9 CALL 3F83
02BC CALL 413D
O2BF,
-GO
A>SAVE 84

JRTPAS2.COM

Note 4: JRT Pascal version 2.2 update

Version 2.2 of JRT Pascal is now being shipped
—2.2includes some internal enhancements and repairs
all problems reported in earlier versions. If you want

26

T TR A . i

this update, it's yours for the cost of a diskette, postage
and handling: $10.

The ONLY disk formats available are:

54" for Osborne, Apple CP/M, North Star, Superbrain,
Heath hard sector, Heath soft sector, Xerox 820,
Televideo

8 single-sided, single density standard
Please specify which of these formats you need.

Note 5: Coming ~— JRT Pascal version 3.0

In January we’ll begin shipping JRT Pascal 3.0 —
a major enhancement. New features include:

® builtin indexed file system

e facilities for screen and report formattting
e dynamic arrays

e improved compiler error recovery

e enhanced EXEC interrupt

o full support for file variables and GET/PUT
¢ expanded user manual

Of course the price of new 3.0 will still be $29.95.

Note 6: Copy and License Policy

We've had lots of questions about our policy on
copying JRT Pascal. As our ads say, permission is
granted to copy both disk and manual for friends — so
long as it's not for resale.

Permission to make copies is also specifically
granted to schools and to computer clubs for members.

If you develop application software for resale, you
may distribute the run-time system (EXEC.COM and
PASCAL.LIB) with your package — with no license or
royalty fees.

Note 7: YOUR Pascal application programs

Naturally, more and more owners are developing
more and more JRT Pascai written application pack-
ages for sale — we’ve heard from many of them. And
— for developers — our copy and license policy is par-
ticularly attractive.

Now we're putting together a JRT Application
Software Directory and would like to list the packages
you have for sale. For free listing, just fill out the en-
closed Application Program Description and retum it
to us with tangible evidence of your package such as
brochure, manuals, diskette -— but quickly, please: the
first Directory is scheduled for February distribution.

Note 8: New address and phone number
The new phone number for orders only is (415)
566-5100.
The address for technical questions and prob-
lem reports:
JRT Systems
Technical Services
P.O. Box 22365
San Francisco, CA 94122

Announcements

The address for new orders:

JRT Systems
550 Irving Street
San Francisco, CA 94122

Note 9: Feedback . . . Please!

A dynamic product, new JRT Pascal versions are
always being developed. The system’s main evolution-
ary force is feedback from YOU — the user. We invite
— and encourage — you to write us your ideas about
how to make JRT Pascal even better.

ENHANCED PASCAL COMPILER FOR
IBM MAINFRAME COMPUTERS

ACUMEN Software Services Ltd. is pleased to
announce the release of Version 2.0B of the Australian
Atomic Energy Commission’'s PASCAL 8000, an im-
proved Pascal compiler for IBM mainframe computers.

The AAEC's PASCAL 8000 Versin 1.2 was one of
the first production compilers for the Pascal 1

- TR

USUS FORMS FOUR NEW INTEREST GROUPS,
ELECTS OFFICERS AT MEETING IN DALLAS

DALLAS, TX, Nov. 15 — USUS, the UCSD-Pas-
cal User’s Society, elected new board members and
officers for next year, committed itself to increased user
education and informed new special interest groups
(SIGs) at the organization's semi-annual national meet-
ing recently concluded here. .

Speaking of the strengths of this popular language,
keynoter John D. Page of Software Publishing Corp.
(Mountain View, CA) noted, ‘*PFS was done in UCSD
Pascal because a task of that size and complexity could
not be done in BASIC.”" PFS, with more than 100,000
units sold, is the single best-selling Apple Pascal
program.

‘‘As the p-System is becoming more widely dis-
tributed and an even more attractive target for appli-
cation developers, we are expericncing a growing de-
mand for user education,’’ according to Randy Bush of
Volition Systems (Del Mar CA), who is the newly
elected chairman of the society’s board of directors.

*USUS plans to increase its emphasxs on tutorials
and ber education to meet that need,’”” he said. In

Version 2.0 offers the user significant improvements;
it will run under any of the OS, OS/VS and VM oper-
ating systems MFT, MVT, VS1, SVS, VS2, MVS and
VM/CMS. It makes full use of the IBM 370's “‘long’’
instruction — it has a dynamic dataset allocation — it
has improved compilation speed — its modular runtime
system makes for easy « ges — it bles the user
to change the final condition code — it can suppon
lower case. The lang ted by the ¢

the future, app ly 40 p t of meeting ¢ t
will be devoted to tutorials for both users and
developers.

Moving in that direction, USUS presented two
free-to-the-public tutorials, added four new volumes to
its software exchange library and formed four new S1Gs
at the Dallas meeting. Some 200 people attended it.

SIGs were formed for users of the 1BM Personal

conforms as closely as possMe to the lSO Draﬁ Stan-
dard. PASCAL 8000 Version 2.0 can rapidly pinp

Cc , Texas Instruments computers and the Sage

computers as well as for those interested in influencing
il

problems in original source language, a function which
is available on only a few other compilers.

In Version 2.0B, CMS support for VM/SP has been
added, improved traceback in the event of a system
abend is provided, compile-time specification of the
maximum procedure table size is introduced, as well as
other improvements to the run-time system.

PASCAL 8000 compilers are already in successful
use in over 250 offices around the world, in banks,
schools, life assurance companies, universities, com-
puting firms and government departments. IBM DOS
and Perkin-Elmer versions are currently under
development.

The compiler is supplied on 9-track EBCDIC 1600
BPI tape and includes; a user rcference manual con-
taining a description of the lang
an implementation guide and |mplementat|on JCL.
PASCAL 8000 has a one- -time license charge ol'
$US 2,000 and 1 and
charge of $US 250.

Enquiries about installing a PASCAL 8000 Version
2.0 compiler should be directed to:

Mr. Bryan Brooking

ACUMEN Software Services Ltd.
P.O. Box 86787

North Vancouver, B.C.

V7L 4L3

Telephone (604) 980-7118

Announcements

dards being developed for multi-key ac-
cess methods for p-System networks.

In addition to Bush, USUS directors for the com-
ing year will be N.C. **Arley” Dealey of Volition Sys-
tems, Michael Ikezawa (Rolling Hills, CA), Nancy
Lanning of SofTech Microsystems (San Diego, CA) and
Robert Peterson of Texas Instruments (Dallas, TX).

Peterson will also serve as president of the organ-
ization. Other offiers are A. Winsor Brown (Huntington
Beach, CA), vice president; Michae! Hadjioannou of
Ticom Systems (Marina del Rey, CA), treasurer: and
Thomas Woteki of Ferox Microsystems (Arlington,
VA).

The IBM PC SIG will have three co-chairs: Gary
Gibb of Thunderbird Properties (Oakland CA), David
R. Gobel of Eastern Busi G belt,
MD) and Mitchell D. Garrett of Digital Engineering
Group, Inc. (Houston, TX).

The TI SIG will be chaired by Danny Cooper
(Plano, TX), and Tom Siep of Texas Instruments (Dal-
las, TX) will head the Sage SIG. Steve Castle (Park
Ridge, IL) is chairing the File Access SIG.

Inadditionto tu!onﬂs, SIG meenngs and techmcal
sessions, the meeting feat:
and hardware demonstrations. Soﬂ‘ech Mlcrosystems
announced the availability of its 4.1 version of UCSD
Pascal and Statcom (Austin, TX) announced and dem-
onstrated CRTForm, an automatic code generator for
UCSD Pascal on 4.0.

27

SUNPIIN

-

Ticom showed the UCSD p-System running for the
first time on the NEC Advanced Personal Computer.
Other demonstrations included the Sage Il computer
from Sage Computer Technology (Reno, NV) and the
Modula-2 programming language from Volition Sys-
tems running on the Sage II, the Apple 11 and the TI
990.

The next scheduled meeting of USUS is Apnl 22-
24, 1983 in San chgo USUS is a vendor-indep

INMOS MICROCOMPUTER ACTIVITIES

Inmos is already established as a technical inno-
vator in memory products. It has market leadership in
fast 16K static RAMs in both 16K x I and 4K X 4 organ-
izations. Its IMS2600 64K x 1 dynamic RAM is the fast-
est available, and it will shortly be introducing 8Kx 8
and 16K x 4 versions.

The other plank in the product strategy is the

non-profit user’s group for the most widely used, ma-
chine-independent software system, UCSD Pascal.

USUS was founded in 1980 to promote and influ-
ence the development of the UCSD Pascal System and
to provide a forum for education and information ex-
change about it. Annual membership in the society is
$20 for individuals and $500 for institutions.

GREAT PLAINS SOFTWARE ANNOUNCES FIRST
SHIPMENT OF THE “HARDISK ACCOUNTING
SERIES” TO APPLE DEALERS

Written in USCD Pascal, the program runs on Ap-
ple I1 and III, with a Corvus or profile hardisk. The pro-
gram will run on IBM's personal computers and most
other microcomputers in April.

The menu driven, double entry accounting system
features interactive modules and complete audit trials.
With extensive data prompts, error checking and an
operator’s manual , users will find the system easy to
use and understand.

For more information contact Great Plains Soft-
ware, 123 North 15th St., Fargo, ND 58102 or call (701)
293-8483.

INMOS ANNOUNCES OCCAM

INMOS announces occam, 2 new programming
language. Named after the philosopher William of Oc-
cam, the language is based on the concepts of concur-
rency and communication. These concepts enable to-
day’s applications to be implemented more effectively
and are essential for the complex multi-processor sys-
tems of the future. i

Systems, even those with only one processor, con-
sist of many parts working together, that is ‘*concur-
rently.”” When used in programming a system, occam
directly rep! s these ¢« s and their inter-
connections and gives an efficient design and imple-
mentation. Future systems will have many processors,
and occam’s understanding of concurrency will be es-
sential for their design.

To introduce occam and concurrency, INMOS is
offering an Occam Evaluation Kit. This will run on any
system supporting the UCSD p-System (version 1V),
and costs $200. The kit includes a compiler-editor and
full supporting doc ion. The UCSD p-System
may also be purchased with the Occam Evaluation Klt
for an additional charge.

Other occam products will become availble in
1983.

28

Transp , an advanced microcomputer due to be in-
troduced in 1984, It is being designed in Bristol, En-
gland at Inmos’ United Kingdom Technology Center.
Microcomputers are the key products in the semicon-
ductor industry, fuelling the silicon revolution. They
are the fastest growing market sector, and with asso-
ciated hardware and software support products, the
largest.

Developing microcomputer systems is a complex
task. The user needs efficient tools to design and debug
systems and [anguages to program applications. Inmos
decided early that the support products would be made
available in the order that the user needed them to cre-
ate his systems. They will be announced during 1983,
ahead of silicon products.

While the transputer will support software in all
popular high-level languages available today, it is seen
by Inmos as more than just a **better’’ microprocessor.
Rather, it is a silicon **building block"’, the component
for the massively parallel systems of the 80's and be-
yond, such as the so-called Fifth Generation computer
systems.

The efficient design and impl ation of these
syslcms is not powble with currem languages, whose

gners ncver ded them for such applications.
To meet this need occam was created.

WHY A NEW LANGUAGE?

A common factor in real systems is that they con-
sist of a collection of components which exist alongside
one another for the lifetime of the system. The com-
ponents are independent, and from time to time com-
municate information wuh one another.

Existing progr are designed for
single-processor use. Although they do allow a system
to be broken down into its separate components, they
insist on executing these components sequentially. This
is a poor model of a real system.

With the reducing cost and increasing capability of

tomorrow's VLSI components, systems can be built -

from muitiple processors, which are much more com-
plex than today's systems. The limitations of current
languages prevent the exploi of such sy ,and
clearly calls for a new language.

0CCAM

Concurrency in occam is implemented by having
a ‘“‘process’’ for each independent activity. Concur-
rency reaches to the lowest level of the language, the
individual 1 g These st s are
called **primitive processes’".

A primitive process on its own cannot do much, so
the language provides **constructors’’ to group them
together into bigger processes.

Announcements

TR TR A

Three types of primitive processes are used in oc-
cam. The first and most familiar is the ‘*assignment™”.
Assignment in occam is exactly the same as in other
languages; it gives a value to a variable.

The other two primitive processes are “input" and

*‘output’’. These allow communication between *‘con-
current processes’’, that i is, processes which are run-
ning in parallel. C ion takes place by input-
ting and outputting ‘*messages’” through ‘‘channels’’.

A channet is a one directional link between two
concurrent processes. A conversation between two
processes requires two channels. A channel imple-
ments a handshaken unbuffered data transfer between
the sending process and the receiving process. Since a
channelis a point-to-point connection, no addresses are
needed in the messages.

Occam needs a minimum of constructors. The
**sequential’’ constructor introduces a block of pro-
cesses which are to be executed one after the other. The
**parallel’’ constructor introduces a block whose com-
ponent processes are to be executed in parallel.

The ‘‘alternative’’ constructor selects one (and
only one) of a set of processes. Each process has a
*‘guard’’ associated with it which is usually an input
statement. The alternative constructor selects the first
of its processes whose guard is ready to input and then
executes it. If several guards are simultaneously valid,
just one of them is randomly selected.

There are also looping and conditional construc-
tors, and a replicator mechanism — which allow the
arraying of processes. In addition, the language gives
access to a real-time clock.

OCCAM SYNTAX

Occam has been designed to be used with an in-
teractive workstations, which affects aspects of the
syntax. For example, since a screen provides a limited
number of lines of text, the block structure of the text
is shown by indentation (rather than BEGIN..END
keywords, which makes inefficient use of the screen).
Because the meaning of a program is affected by its
physical position on the screen, an integrated editor-
compiler is nomally used to write an occam program.

Here are fragments of occam to illustrate the
syntax:

SEQ -~ sequential constructor
in?char -- first {nput from channel “in"
outichar -- then output the value to channel “out®
PAR -- parallel constructor
outl!'A’ -- output "A" to channe! “outl® in parallel
out2!'s’ -- with outputting “B” to channel “out2*
ALT -- alternative constructor
inl?char -- guard; try input from chamnel “inl"
out tchar -« tf guard succeeds, output its input
in2?char -- another guard
out {char -~ and its associated process
WHILE x>0 -- WHILE loop
SEQ
in?x -~ input,
outIx -- then output as long as x>0
IF x<0 -- conditional
Xi=ex -- assignment
VAR char; -- declare a vartable, “char”
CHAN in: -- declare a channel, “in"
VAR array[100): -- declare a vector, "array” of 100 elements

Announcements

CHAN inputs[16] -- declare & vector of 16 channels

SEQ 1={D FOR 100) -- FOR 100p, sum array elements sequentially
sum:wsumearray[i])

PAR 1+{0 FOR 100) -- "replicator” crestes 100 parallel processes
array[1):=array[1]sl -- increments array elements in parallel?

ALT 1a(0 FOR 100) -- alternative and replicator combined
inputs[i]2char -- select an input from array of channels
out Ichar «- and output the winner
char:sarray(BYTE 1) ~- BYTE keyword allows byte addressing

PROC buffer (CHAN fn,out) -- adstraction mechanism

MMILE TRUE «- laop for ever
VAR x: -
SEQ -- implement a l-deep buffer
int
out !x
CHAN ¢ :
PAR
buffer (in.c) -~ now invoke the abstraction

buffer {c, out)

OCCAM IMPLEMENTATION

The conventional implementation of a process,
which uses an area of memory to hold the variables and
scheduling information, works. For many applicaions.
a sn'nple round-robin scheduler is adequate. Many im-

ions of a ch 1 are feasible and should be
reldlly apparent to system, designers. The details will
vary to exploit machine-specific features or other
choices, like a multiprocessor implementation. For in-
stance, a channel between processors can use shared
memory, IO ports or serial links.

Interrupts are easily handled within occam. A pro-
cessor with N nestable interrupts can be modeiled in
occam as N+ | communicating processors. The base

needs a scheduler, while the interrupt pro-
cessors may have none; being just a single process wait-
ing for input from a channel which hides the interrupt
logic. The microprocessor hardware will then auto-
matically multiplex the processor betwecen base pro-
cessor and interrupt processors. This ability to handle
interrupts in the language can significantly reduce de-
sign and integration timescales.

Implementations of occam are efficient, with code
densities and execution rates closer to assembler than
typical high level languages like Pascal. This is because
of a deliberate choice to restrict the language to those
features which are supported directly by all likely ma-
chines. An implementation of occam needs a small run-
time system but this is typically less than 100 machine
instructions.

The overheads of concurrency is higher in systems
which use ‘‘gratuitous concurrency'’ than in those
where the parallelism is tuned for peiformance. For in-
stance, doing assignment statements in parallel on a
single processor system will result in some overhead.
However, concurrent communication is efficient and
sensible. Iti is cxpected that an occam system on an in-

dustry-st will incur less over-
head than one using a lmdmonal real-time kernel.
WILLIAM OF OCCAM

The languag was designed by Inmos in

nj ion with Profi C.AR. (*Tony') Hoare,
Di of the Progi ing Research Group at Ox-
ford University.

A predecessor of his at Oxford was the fourteenth
century philosopher William of Occam who is best
known for ‘*Occam’s Razor’’, **Entia non sunt multi-
plicanda practer necessitatem.”” Literally transiated,
**entities should not be multiplied beyond necessity”’,
it is often seen as a plea to keep things simple. More
generally, it suggests that if two or more solutions to a
problem exist, the simplest one is preferred.

This approach of simplicity is fund tal to oc-
cam and is extended to all work that Inmos is carrying
out in its VLSI products. It also reflects the well-pub-
lished views of Professor Hoare that many modern lan-
guages are unnecessarily complex, and in some cases
dangerously so.

OCCAM PRODUCTS

Inmos ia announcing an Occam Evaluation Kit
along with the language itself. It allows medium-sized
programs to be designed, written and executed, and is
i ded to teach people to think **parallel’’,

The kit is a portable compiler and editor built upon
Softech’s UCSD Pascal system (version IV). It gener-
ates p-code, which is executed in the normal fashion by
a p-system host. It is available tailored for the Apple 2,
Sirius 1/Victor 9000, Intel MDS, IBM Personal Com-
puter, VAX/VMS and LSI/11 and is provided in the ap-
propriate diskette formats for these hosts. It is also
available in uncc itted form on 8 diskette in Sof-
tech’s UCSD Pascal distribution format (single-sided,
single-density).

The kit includes | age and compil i
together with installation instructions, warranty and
example programs. The Occam Evaluation Kit costs
$200

During the first half of 1983, Inmos will announce
hardware and software packages which support se-
lected industry standard microprocessors, including
the iAPX 86 family and the MC68000 family of micro-
processors. These packages will be offered either as
**software-only’” for running on a UCSD p-system
host, or integrated with a microprocessor-based work-
station offering high-resolution graphics, 256K bytes of
memory and high density floppy-disks. Expansion ca-
pability for the workstation will include a local area
network and Winchester disks.

For more information on the Occam Evaluation
Kit, contact Brad Hartman at INMOS, Colorado
Springs, Colorado (303) 630-4362.

TINY PASCAL PLUS+ FOR PET AND APPLE 11

ABACUS SOFTWARE announces the release of
TINY Pascal PLUS+, an enhanced version of TINY
Pascal with support for graphics. The package runs on
the 32K PETS and APPLE II's with Applesoft in ROM.
It is available for immediate delivery.

TINY Pascal PLUS+ is a complete package allow-
ing the user to create, compile and execute programs
written in the Pasal language. TINY Pascal PLUS+
includes:

o LINE EDITOR to create, modify and maintain
source

¢ COMPILER to produce P-code, the assembly
language of the P-machine

o INTERPRETER to execute the compiled P-
code (with TRACE facility)

e Structured programming constructs: CASE-OF-
ELSE, WHILE-DO, IF-THEN-ELSE, RE-
PEAT-UNTIL, FOR-TO/DOWNTOQ-DO, BE-
GIN-END, MEM, CONST, VAR, ARRAY

TINY Pascal PLUS+ provides graphics and other
built in functions — GRAPHICS, PLOT, POINT,
TEXT, INKEY, ABS and SQR. The PET version sup-
ports double density plotting on the 40 column screen
giving 80 x 50 plot positions. The APPLE II version
supports both LORES and HIRES graphics with:
COLOR, HGRAPHICS, HCOLOR, HPLOT and PDL.
For those users who do not require graphics capabili-
ties, the original TINY Pascal package is still available.

Prices for the diskette versions for APPLE II and
PET are $50. A cassette version for the PET is also
available for $55. The original non-graphics versions
are available for 16K/32K PETS and APPLE II's on
diskette for $35 and on cassette for the PEt for $40.

For more information contact: ABACUS Soft-
ware, P.O. Box 7211, Grand Rapids, Mich. 49510.

HELP WANTED

Our company is presently looking for a Pascal ex-
pert to work for us. His duties will include bringing Pas-
cal into the data center as a second language. He/she
should have five years experience in Pascal usage, a
degree and be a good communicator. This career op-
portunity is with a major conglomerate and involves
state-of-the-art technology.

Please have interested people contact Larry C.
McWilliams at 1-800-821-3194.

RIDGE THIRTYTWO GRAPHICS

The RIDGE ThirtyTwo is a 32-bit multi-user
graphics work-station. Pascal is the system language.

We are seeking engineering and scientific packages
written in Pascal to run on our machine.

The RIDGE ThirtyTwo offers high-performance
(2-4 times the speed of a VAX 11/780) and high-reso-
lution graphics (1024x 800 pixel graphics displays). I
have enciosed results from the Stanford Puzzle Pro-
gram and the Whetstone Benchmark. Please contact
me if you know of any software houses or OEM's who
would like to use our high-performance Pascal.

STANFORD PUZZLE BENCHMARK
(Pascal, Subscript version)

Machine

(seconds) Time

IBM-3081 1.3

S-1 Mark 1 20

IBM-370/168 2.1
Announcements

LTI e

Ridge-32
DEC 2060
IBM-370/158
VAX-11/780
68000 8 Mhz
IBM 4331
Apple 11

The puzzle program, developed at Stanford University
by Forest Baskett, tests the computer’s ability to per-
form basic operations, such as procedure calls, array
references, conditional branches and comparisons.

e e T gt

2.2 Prime 750 750
5.4 VAX 11/750 - 33t
1.5 DEC 11/34 134
10.2 (68000 8 Mhz) 70
;zg The Whetstone program is a floating-point intensive
1 500‘ 0 program representative of scientific calculations.

Abrams at 408-745-0400.

WHETSTONE BENCHMARK

Machine
Ridge-32

Perkin Elmer 3240

VAX 11/780

Whetstones
(Thousandy'sec)

1500

1172
753 (*1168)

*With addition of hardware floating point.

Please contact Ridge Computers, 586 Weddell Dr.,
Sunnyvale, California, 94086 or call Benay Dora-

Announcements

SOFTWARE CONSULTING SERVICES

901 WHITTIER DRIVE ALLENTOWN, PENNSYLVANIA 18103 - (215) 797-9690

PASCAL VALIDATION SUITE VERSION 3.1 NOW AVAILABLE

There are nearly 300 licenses of earlier versions of the Validation Suite. The new Swite is
an extensive revision of version 3.0. It contains corrections lo nearly 88 deficiencies found
in PVS V1.0 and has 533 test progeams of which over 150 are new or modified. Subsequent
revisions (o the Suite are likely to be minor.

The Validation Suite was developed by Brian Wichmans in the UK. and Arthur Sale in
Tasmania under the auspices of the Pascal Users Group. The intention of the puckage is to
encourage a very high degree of portability of Pascal programs (eves higher than presen-
tly exists), and to provide users with a mechanism to assure themselves that vendor's
products comply with the § . Vali reports on compilers are published in
Pascal News.

Restrictions

The conditions of release prohibit the distribution of the package to third parties 3o as to
limit the growih of unauthorized and inaccurate versions. However, no restriclion is placed
on the use ol the package lor validating Pascal precessors, for benchmarking. lor accep-
tance tests, for preparing comparative reports and similar activities. mer for the distribu-
tion of the results of such use. The Validation Suite has heen widely used and distributed,
and has not been restricted 10 a small subset of the user community.

The Way Things Are

The PPascal Compiler Vali Suite ists of app iy 15,900 lines of test code
for *ascal compilers. It was developed by A.H.J.Sale and R.Freak of the University of
Tasmania and B.A. Wichmaan and Z.J.Ciechanowicz of the British National Physical
Laboratory. Thes own it and have the sole rights in determining the policies involved in its
distribution. Although the value of the Validation Suite is not directly knowable, one can es-
timate the cosl of recreating it at approximately six dollars per line of code or about $100..

000. Drs. Sale and Wichmann have sutherized me (as an individual) to act as a distributer .

for the Validation Suite in both North and South America.
Let Us Help You

1. Should you have any technical questions regarding the Validation Suite, please write to
me idon't telephone) and 1 will respond or forward your commentary 10 Sale and
Wichmann. These men constantly travel and it would be difficult to track them down
without my help. .

2. If you have trouble reading one of our tapes or disketies call Martha Cicheili (215-797-
96%0) and she will heip siraighten out the problem. Martha is in charge of preparing the
distribution.

Ptease Help U's

1i the terms of the license ag are not ptabie to your please do
nol request a copy of the Validation Suite. | have neither the right nor the inclination to
authorize any amendments 10 the Sale-Wichmann license agreement.

31

. ry

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of req
ITi

name if req isa)

Phone Numb
Name and address to which information should
be addressed (write ‘as above’ if the same):

Signature of r
Date:

q

In making this application, which should be signed by a respoasibie person in the case of a company, the requestor agrees
that:

a) The Validation Suite is recognized as being the copyrighted, proprietary property of The British Standards
Organization and A. H. J. Sale, and

b} The requestor will not distribute or otherwise make ilabl chi dab

copies of the Validation

Suite, meodified or unmodified, to any third party without written per of the copyright holders.
s return, the copyright holders mnt Iull permlulol to use the prog ni & d in the Valldati
Suite for the purpose of tests, h of ive reports and

similar purposes, and to make nvnlhble the Imhp of the resuits of mplhdu and execution of the programs te third

parties i the course of the above . In such d reference shall be made to the original copyright notice
and its source.

Distribution Charge: $300.00
Make checks payable to:

Software Consulting Services

in US dollars drawn on a US bank.
Remittance must accompany application.

Mail Request and Check To:
Softwnre Coluul Services

901 Whitt;
Allentown PA “18103 USA
ttn: R. J. Cichelli

[LV Ditots
O-Troek, o6d party. 1/2°1000". Soect Densly: [) Siegle Denslty
(190D bpl [) 1500 bpi () Double Bensity
{) ANSI-STANDARD. Esch logical recerd is an Format
::’:'::::‘;x { 1cem {] UCED 8 W, 5. Micraongies)
CIUCSINN [) DECHT (Sge Beseity)

rocurds. Select Characier Cade: (] DECREX Fies 11 [) 18 3740 [Single Bencity EBCOIC)

[) ASCH () EBCOKC
() Special DEC Systom Altarasie Formals: Special Format
[) RSX-IAS PIP (requires ANSI MAGtape REX SYSGEN). {) interieave (1-28}
{) DOS-RETS FLX. {)t (025

Office Use Ouly

Sigwed:
Date:

" Richard J. Cichelli
On Betsalf of A. H. J. Sale and B.S. L.

it e

Inplomniation Roports Implomontation Hoponts

Ioplomontssion Roponts Iuplomontation Reponts Inmplom

0. DATE 11/23/82

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR

Foster Schucker
Assistant Director
Computing Services
Suny @ Fresonia

) Fredonia, !NY 14063
716=-673-3393

i 2 %ACI-"NE/SV TEM CO vF;%URATlON {* Any known kmits on the conf| or ft ired. o.g.

oughs Larae 9
85000/36000/B7000 operating system. °)

3.2, 3.3, mcp

{* Give @ person, address and phone number °}

3. DISTRIBUTION (° Who to ask. how it comes. in what options. end st what price. °}
Operations Supervisor 1600 BPI or 800 BPI
Computing Services Library Maintenance tane
Fred Suny A Fredonia
Fredonia NY 14063
$25 w/tape $50 without (1800)
Ask for 3.3 Pascal

4. DOCUMENTATION (* What is available and where. °}
Not much but is in computer readable form

5. MAINTENANCE d. tully

Partially naintained. It’s used as a teaching tool, so not rmach
support is reallv needed

i 1sit d. etc? *)

8. STANDARD /* Wow does it measure up to standsrd Pescel? s it & subset? Extended? How.*}

Have not had a chance to try the sale suite yet. It has extensions
to fit into the Burroughs File System. Other minor bhells/whistles.

7. MEASUREMENTS /° Of its speed or space °)

REUIABILITY (* Any information about fisid use or sites installed. *}

Running at & 25 sites

9. DEVELOPMENT METHOD (* wow was it devetoped and what was it written in? °)

Step 5 compiler modified by Jim Madden UCSD. Pascal is source
Lanquadqe.

0. LIBRARY SUPPORT (* any orher support for compiter in the torm ol link to other
Supports Burrouchs intra lanauacge librarv support.

—

source K

otc.)

implementation Reports 33

N A

CDC 6000

A version of Pascal 6008 3.2 is now available that uses the ASCII character
set (rather than CDC Display Code). If sufficient interest is found, it will
be made available for distribution through the standard Pascal 6020 mechanism.
Convey your interest to your Pascal 6009 distributor or:

Scott Trappe

MS 92-134

Tektronix, Inc.

PO Box 509

Beaverton, Oregon 97077
(503) 629-1717

CDC 7680 (Manchester)

0. DATE 8/15/80
1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give » person, address snd phone number *)

University of Manchester Regional Computer Centre
oxford Rd., MManchester, FEngland

Maintainer - see s

2. MACHINE/SYSTEM CONFIGURATION (°* Any known limits on the confi

Control Data 7600 and CYQRR 76%°%fn9 system.)
SCOPE 2.1.5, 32/64K/ SCM,

3 DISTRIBUTION (* Who to ask. how it comes. in what options. and at whas price. °}
Contact R. J. Collins at above address. A distribution aqreement
rust be sioned and the cost is %50 sterlinda,

4. DOCUMENTATION (* What is available and where °}
Same as Pascal 6000 release 3.

5 MAINTENANCE (1 intained, fully d. etc? *

UMRCC cannot undertake to maintain the nroduct althouaqh we would
be interested in anv buas in the 76NN demendent code,

6. STANDARD (" How does it messure up to standard Pascal? Is it a subset? Extended? How. "
Same as 6000 PASCAL release 3.

7 MEASUREMENTS (0f its speed o space *f

Requires 50000B words merory to compile most student jobs.,

8 RELIABILITY * Any information about fisld use or sites installed.]

Same as 600N PASCAL release 3.

9 DEVELOPMENT METHOD (* How was it devaioped and what was it written in? *}

Cross cormiled from CYBER 7200compiler

LIBRARY SUPPORT /- any other support for compilier in the form of linkages to other languages. source libraries. etc. *)
Same as 60N0 PASCAL release 3.

tmplementation Reports

g fon or support sof @ required. a.g.

DEC PDP-11, VAX-11 (Oregon Software)

Oregon Software Pascal-2

0. DATE 4 ynovember 1981
1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR [Give » person. address and phone number. *)

Oregon Software
2340 SW Canyon Road
Portland Oregon 97201

Phone: (503)226-7760

2. MACHINE/SYSTEM CONFIGURATION /* Any Anown #mits on the contip or supp 7 g
operating system. *)

All Digital PDP-11 processors, Including Vax-11 in compatibility
mode. All Digital PDP-11 operating systems, RSTS/E, RSX-11,
RT~-11. .
Compiler requires EIS, 28K words of memory, 500 blocks of disk..

3. DISTRIBUTION (* Who to ask. how it comes. in what options, and st what price. *)

Available from above. Write for price and terms.

4. DOCUMENTATION (° What is available and where. %)

pascal-2 User Manual, 175 printed pages, %ncludes
utility guide. Shipped with order, or write for a free copy.

5. MAINTENANCE /ish d. fully d, etc? *)

Fully maintained.
6. STANDARD (° How does it messure up to stenderd Pascal? Is it a subset? Extended? Now.*)

very close to draft standard without conformant arrays.

Extensions include structured constants, "otherw@se".in case,
1/0 interface, Random access I/0, low-level machine interface
extensions.

7. MEASUREMENTS (* 07 its speed or spece. *}
Code is a small as and as fast as any other Digital Language
processor. Benchmark data available on request.
8. RELIABILITY /* Any information about fleid use or skes instalied. *)
Installed at over 200 sites. Has been used in-house for
2 years.
9. DEVELOPMENT METHOD (* How was & developed and what wae it written in? *)

Written in Pascal, bootstrap using OMSI Pascal-l

10. LIBRARY SUPPORT (* Any other support for compher in the form of other langu. , ote. *)
Linkage to external routines in PascaT, ﬂ%cro, o oY tran.

Utility programs include cross reference generator, formatter,
documentation aids.

Iimplementation Reports s

A N S R

Intel 8085

(Cogitronics)

0.

1.

2.

36

DATE 28 January 1981

IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (° Give 2 person, address and phone number. °)

Donald L. Dunstan (503) 645-5043
Cogitronics Corporation

5470 N.W. Innisbrook PI.

Portland, Oregon 97229

MACHINE/SYSTEM CONFIGURATION (* Any known Himits on the
. X operating system. *}

Cogitronics Pascal is configurable to OEM environment.

Target computers: Z-80, 8085

Host computers: GenRad ADS 2300; Tektronix 8002A, 8550; CDC Cyber (6000 series)

Planned host computers: PDP-11; IBM 370, CP/M compatible systems

DISTRIBUTION /* Wno to ask, how it comes, in what options, and at what price. *}

Bill Lowery, Director of Marketing

Available on machine readable media of host computers
Single user license $2000

Customer Demonstration Kits available

DOCUMENTATION [* What /s avaiisbie and where. *)
Cogitronics Pascal Reference Manual (available for $15)

MAINTENANCE /54

d, tully d, etc? *)
Fully maintained
STANDARD (= How does it measure up to standard Pascal? is it a subset? Extended? How.*)

ISO standard, see validation suite results
Microprocessor Software Engineering Adaptations

MEASUREMENITS (" O its speed or space.)

Z-80 based GenRad development system compiles at 800 source lines per minute
Requires 64K system

RELIABILITY [Any information about field use or sites installed. *}

Product released 1/1/81
DEVELOPMENT METHOD (* How was & developed and what was it written in? *)

Cogitronics Pascal was written and developed in Cogitronics META compiler
generation system.

LIBRARY SUPPORT (* Any other support for compiler in the form of to other X

source Nbraries, ete.)

Linkage is awvailable to externally compiled Pascai modules, externally compiled
MICRO language modules, and externally assembied routines.

Impiementation Reports

i A et

©

10.

Intel 8088, 80886 (Microsoft)

DATE Octabsr 28, 113)

IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give # person, address snd phone number. °)

Bob Wallace or David Jones
MICROSOFT, INC.

10700 Northup Way
Bellevue, WA 98004

MACHINE/SYSTEM CONFIGURATION [* Any known Mmits on the configuration oc support software required. e.g.

opersting system. °)
8080, 8086, 28000 under MS-DOS, UNIX, CP/M~80, CP/M~-86 and others.
Above plus DEC-20, VAX, IBM 370 and others.

Targets:
HOST:

DISTRIBUTION (* Who to ask, how it comes, in what options, and st what price. °)

Only offered to the Hardware Manufacturers for distribution. Please

contact OEM Sales for price and availability.

DOCUMENTATION * What is available and where. °}
Manual - $20.00.

MAINTENANCE (*/sit d. stc? *)

Fully Maintained.

STANDARD (* How does it messure up to standard Pascal? Is it & subset? Extended? How."}

IS0 standard (Level 0) plus many extensions for systems programming:
strings, address type, super arrays, attributes, value section, interfaces,
etc.

MEASUREMENTS (* Of its speed or space. *)

Generates very efficient optimized native code.

RELIABILITY [Any information about field use or skes installed. *)

Relatively new but well tested.

DEVELOPMENT METHOD (* How was it developed snd what was it written in? °}
Developed with DEC-20 Pascal; now self-compiled.

LIBRARY SUPPORT (* Any other support for compiier in the form of linkages to other languages. source Woreries. etc. °}

FORTRAN~77 front end available, shared library. Compatible with

other Microsoft products.

implementation Reports

7

. rx

b

38

Intel 8088 (Onacki)

DATE

Auqust 1, 1981
IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (° Give a person. address and phone number. *)
Steve Harrison
Onacki Systems
5161 Cole Street
San Diego CA 92117
MACHINE/SYSTEM CONFIGURATION (* Any known limits on the figuration or support goft quired., o.g.
radio Shack®s TRS=-80 microconpggg?g;'ﬁ%hzl I and “odel III
Rung under the TRDOS operating system
DISTRIBUTION 1 Who 10 ask. how it comes. in what options. and at what price. *)
Available from Onacki systems
Cost: $239 (discounts available on volume orders, write for information)
Distributed on 5.25 inch diskette
Please specify "odel I or Model III microcomputer
DOCUMENTATION /° what is avaitable and where. *)

User manual,, which is included with purchase, describes how to use
the compiler and the points of difference with 1S0 DP195,1 DP7185,1

MISRTENANCE. A58 0000 I e WG F AL on Pascal

All questions or comments will he answered by Onacki Systenms,

STANDARD

(* Mow does it massure up to standard Pascel? Is it a subset? Extended? MHow. *f

The mwrincirle restrictions from ISO DP7185.1
*Procedural, Functional and Conformant-array paramaters are not
implemented
*The cgoto statement is not imnlemented
*Piles have been (sliaghtly) chanaed to work with TRDOS operateing
systenm

MEASUREMENTS

{" Of its speed or space *)

Extremely comnact object code format. For example: the cormriler is less
than 8k bytes
RELIABILITY

{* Any information about field use or sites installed °j

An earlier version of this corriler has heen in use for 2.5 years

DEVELOPMENT METHOD (* How was it developed and what was it written in? *)
Conpiler is written in Pascal and was written and is maintained on a
TRS=-80 Model I computer with vne 5.25 inch disk drive

LIBRARY SUPPORT (* any other support for compiler in the form of link guages. source libraries, etc. *)
Additional declared rrocedures and functions allow access to the TRS-80°s
araphics, random number generator, etc., as well as access to machine
lanaquage routines '

to ather /.

Implementation Reports

e ——— g

Intel 8880 (MT Microsystems)

April 20, 1981

0. DATE

1. "‘“1% EaMeiNx’(?Rﬁm“qg;{AlNEﬂ/DISTHIBUTOR {* Give a person, sddress and phone number. °)

MT MicroSYSTEMS

1562 Kings Cross Drive
Cardif€, CA 92007
(714) 755-1366

2. MACHINE/SYSTEM CONFIGURATION

{* Any known Nmits on the fi ion or supp: Uy G
operating system. *}

d eg

56k. 8080/280
CP/M required
24 by 80 CRT

3. DISTRIBUTION

From MT MicroSYSTEMS, on floppy diskettes, $475 (suqqested retail)
tno options] includes screen editor w/ progran proofreader
{checks syntax, spelling, reformats, etc.)

{* Who to ask, how it comes. in what options, snd at what price.)

4. DOCUMENTATION
185 page User’s Guide supplied with system

{* What is availadle and where. °)

(*lsit

5. MAINTENANCE
Fully maintained by MT MicroSYSTLMS

d. fuily d. etc? *)

6. STANDARD

ISO Standard with extensions: Dynamic Strings, Modular Compilation
Bit/Byte manipulation, I/O port access, Inline assembly code

{* How does it measure up to standard Pascal? Is it & subset? Extended? How.*)

7. MEASUREMENTS (° 0/its speed or space *)

150k bytes of disk space
400 lines/minute on 4 Miz 280 with 8°*°* flopnpies
8. RELIABILITY

{* Any information about tield use or sites instalted. °)

More than 1000 field sites installed

9. DEVELOPMENT METHOD

{* Mow was it developed and what wes it written in? *)

Developed from scratch in Pascal, 3-nass recursive descent

10 LIBRARY SUPPORT (* Any other support for compiter in the form of link to other source , etc. °}
Large subroutine library of partable and machine devendent procedures
(more than 109 routines)

Implementation Reports 39

‘Mostek 6502

oy

(Abacus)

DATE January 2, 1981
IMPLEMENTOR/MAINTAINER/DISTRIBUTOR {* Give & person, address and phone number. *)

Abacus Software
P.0O. Box 7211
Grand Rapids, Michigan 49510

MACHINE/SYSTEM CONFIGURATION (* any known limits on the confk fty ired,

or
APPLE TI,APPLE II+ with DOS operating system. 4
PET/CBM New ROMS 16K/32K casgsette or diskette

DISTRIBUTION /* Who to ask. how it comes, in what options, snd at what price.

APPLE I11/APPLE II+ standard TINY Pascal §35. diskette
APPLE II/APPLE 11+ graphics TINY Pascal PLUS EO. diskette
PET 16Kk/32K standard TINY Pascal $40 cassette
PET 16K/32K standard TINY Pascal $35. diskette
PET 32K graphics TINY Pascal PLUS+ $55. cassgette
PET 32K graphics TINY Pascal PLUS+ $50. diskette
DOCUMENTATION (* What is available snd where. *)
TINY Pascal User's Manual $10. refundable with order

of software

MAINTENANCE /54 d, fulty

d, etc? *)

Will correct any problems found by users.

STANDARD (° How does it measure up to standerd Pascel? Is it & subset? Extended? Now. Yy

Subset implementation with graphics extensions for
PET and APPLE I1I.

MEASUREMENTS (° Of #s speed or space. *)

RELIABILITY (° Any informetion sbout field uss or sites installed. *)

Cver 200 users of TINY Pascal.
TINY Pascal PLUS+ just released.

DEVELOPMENT MEYHOD (* How was it developed and what was it written in? *)
BASIC and 6502 Assembly language

LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other source Hbracies, etc. *)

Not required

Implementation Reports

Motorola 6889 (OmegaSoft)

0. DATE

ddi Ml phone A}

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR

OmegaSoft
P. O. Box 70265
Sunnyvale, CA 94086

2. MACHINE/SYSTEM CONFIGURATION

{* Give a person,

{* Any known Nmits on the 7 or supp ft quired, o.g.
operating system. *}

Motorola 6809 compiler

MDOS version; MDOS09 03,00 8K RAM for operating system plus 24K or
more at $2000 for compiler, 2 or more disk drives, at least one drive
canable of reading a sinale-sided disk in the standard ™MDOS format

FLEX version:
or more at $0
of reading an
tored disk in

6809 FLEX V3,0, 8K RAM for operating system plus 24K

for compiler, 2 or more disk drives, at least one capable
8 or 5.25 inch sinqle-density, single-sided, soft-sec-
the standard FLEX format

Other formats: contact OmegaSoft for availability

3. DISTRIBUTION /° Who to ask. how 1t comes, in what options. and at what price. °)

Available from OmegaSoft
Cost $200 with runetime lihrary object
$250 with run-time library and source
Includes compiler, assembler, loader and debuqgger in object form,
utilities in object code and Pascal source, and user manual

4. DOCUMENTATION

{° What is svailable and where. *)

User manual, included with purchase, available seperately for $20

S. MAINTENANCE /st

ined. fulty ined. otc? *

6. STANDARD

(has HEX, STRING types:; only textfiles; oriagined variables; EXTLRNAL
procedures; OTHCRWISE/ELSE in case statements; no nonelocal coto’s;
**#%* nower operater; string concatenation; and, or, not on numbers)
(May be one of the more complete implemantations of Pascal for micros)

{* How does it measure up to stendsed Pascal? is it 8 subset? Extended? Mow.*)

7. MEASUREMENTS

(* Of its speed or space °)

8. RELIABILITY /° Any information about tield use or sites installed. *)

9. DEVELOPMENT METHOD /* Now was it developed and what was it written in? *}

source lib,

10 LIBRARY SUPPORT * Any other support for compiler in the form of li to other leng ies. etc. °)
Additional predeclared procedures and functions for strings, files

Implementation Reports 41

Texas Inst. 998 (TI)

[—1

0. DATE pelease 1.7, Auqust 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give o person, address and phone number. °)
Imnlemented by Texas Instruments. Information is availahle from
TI sales offices, or write to:
Texas Instruments, Diaital Systems Group, '1S784, P, O. BRox 1444,
Houston, Texas 77901 or call (512) 250-7305,
Problems should be rerorted to: Texas Instruments, Software Sustaining,
'152188, P.O. Box 2909, Austin, Texas 78769 or call (512) 25n-74n7,

2 MACHINE/SYSTEM CONFIGURATION (° any known limits on the conlig

or support soft Quired, a.9.

The compiler runs on a TI 99n/10 6?"“5%7¥2"c$mputer under the DX1N or
DNNS onmerating system (TI DS990 system “odel 4 or larqer, with at least
192K bytes of memorv).

The compiled and linked object proqrams can he executed on anv merber
of the 990 computer family (FS09N or DS990 system) usina the TXS5. TX990
DX10, or DMOS operating svstem,

3. DISTRIBUTION (° Who to ask. how it comes. in what options. and st what price. *)

Available on maanetic tavres, disk nack, or diskettes., Contact a

TI salesman for a nrice quotation and further details.

4. DOCUMENTATION [What is availabie and whaere. °)

The TI pascal lanquadge is specified in the TI Pascal Referance Manual
TI part number 2270519-9701, Instructions €for using the compiler ana
Jinking and executina Pascal nrograms are aiven in the *¢*DX10 TI pascal
Proarammers Guide®®, part nunber 2279523-9711 and the s eDI0S TI

Pascal Programmers fuide®®, vart number 2270517-97n1,

5. MAINTENANCE (st inteined. fully d. etc? °)

TI Pascal is a full supported product. Bua renorts are welcormed and
maintenance and further develommentswork are in proaress,

6. STANDARD (* Mow does it messure up to standard Pascel? Is it a subset? Extended? How.*}

TI Pascal has sone differences £rom standard Pascal, The major differences
aret * A aqoto cannot be used to jumn out of a vrocedure
* The control variable of a 'OR statement is local to the loop,
* The precedance of Boolean operators has been modified to he
the sarme as in Alool and FORTRAN
* The standard orocedures GIT and PUT have heen replaced hy
aqeneralize:l READ and WRITE nrocedures,
TI Pascal has manv extensions to standard Pascal includino random
access files, dynamic arravs, ESCAPE and ASSERT statements, ontional
OTHERWISE clause on CASL statements, and “ormatted RREAD,
7. MEASUREMENTS (- Of its speed or space. *}

The compiler occuries a 64K bvte memorv reaion,

8. RELIABILITY (° Any information sbout field use or sites instalied. *}

The systerm has heen used by several different arouns within TTI since
October of 1277, and by a number of outside customers since May of 1978,
Urdates have been released in January 1979, Januarv 1980 and Auqust 1081
This long historv of extensive use and maintenance make this a stable
and reliable vroduact,

9. DEVELOPMENT METHOD (* How was it developed snd what was it written in? Y]

The compiler produces object codeé which is‘ link-edited with run-timne
supnort routines to form a directly executahble vrograr., The comniler is
written in Pascal and is sel€=compilina,

10 LIBRARY SUPPORT /* any other support for compiler in the lorm of linkages to other 1. source lib . eotc. %)
TI Pascal surports seperate comnilation o€ routines and allows linkina
with routines written in FORTRAN or assembly lanauaae.,

42 tmplamentation Reports

LS TR a2 N .

Zilog Z2-80 (Ithaca)

0. DATE May 12, 1981

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR /° ONe & person, address and phone number.)
Ithaca Intersystems, Inc. PASCAL/2
1650 Hanshaw Road
P.O. Box 91
Ithaca, New York 14850

2. MACHINE/SYSTEM CONFIGURATION (" Any known mits on the configuration or suppert software requiced. o.g.
\ m. -
2Z-80 system with minimum of S6K memory !includi{'lg the CP/M operating 8ystem)
and one disk drive.

(64K and two disk drives recommended for serious program development)

3. DISTRIBUTION (° Wno to ask, how it comes, in what optiens, and at what price. *)
Package includes object code for Pascal/Z compiler, ASMBLE/Z macro-assembler,
LINK/Z linker/loader and SWAT, our interactive symbolic debugger. The
libraries are provided in both object and commented source code (2-80).

Also included are a number of support and example files and programs, and documentation.

Available on CP/M compatible 8" diskettes from the distributor--contact
Intersystems for information on obtaining other formats.
U.S.{Dom)retail price: $395.00

4. DOCUMENTATION (* What is svaiiabie and where. *}
Over 300 pages of documentation, including: the Pascal/Z Implementation Manual,
ASMBLE/Z , LINK/Z and SWAT manuals and. the Jensen & Wirth USER MANUAL AND REPORT.

5. MAINTENANCE (ih é d, fully meinteined. etc? °)
Updates approximately every three months, available for a nominal charge to
registered users.

6. STANDARD (* How does it measure up to standerd Pascei? Is it # subset? Extended? How.*)
Closely follows Jensen & Wirth definition. Exceptions: No GET/PUT (our READ/WRITE
routines have been expanded to handle all I/O functions), no PAGE, no procedural
parameters. Extensions: Direct File Access, Variable length strings, EXTERNAL
routines, separate compilation, INCLUDE files, variant records implemented,
ELSE on the CASE statement.

7. MEASUREMENTS (* Of 2ts spoed or space. *)

Running the Erasthones sieve on page 54 of the USER MANUAL AND REPORT (with a
WRITE statement added to display) 6K COM file ran in 45.85 seconds, much better

8. néEﬂRlﬁEﬂPﬁtﬁsigyhhmnumn.uunnuUu-.vun-nuuhu.v

Over 1500 Users. No bugs found by users in current release (3.3), which has
been released for three months.

9. DEVELOPMENT METHOD (* How was & developed and what was it written in? °)

Developed in Pascal.

10. LIBRARY SUPPORT (* Any other support for complier in the form of to other source Nbvaries, etc. °)
Libraries included in source. Alternate libraries available from Z Users' Group.

Assembler outputs Microsoft-compatible REL files -- can be 1linkéd to other
languages using our LINK/Z, provided protocol is same.
Impiementation Reports 43

k. .

B O,

Machine Index

Z i 10 2_80 (CO itr : Machine (operating system) Issue:page Comments

9 gitronics) L 15101 Paacal | Derved #om Pascal §)
BESM-8 01::107

Burroughs BS700 #18:107

See Intel 8085, Burroughs B6T0/B7700 (MCP) #19:113
€DC 6000 #19:115
€DC 6000 #15:108

70 and 170 #15:108
DEC PDP-11 #15:111
DEC PDP-11 #16:112 UCSD Pescal
DEC PDP-11 #19:115 UCS0 Pasosl
DEC POP-11 #15:124
DEC PDP-11 (RSTS)
DEC POP-11 (RSX-11MIAS)
%g m-" gnsx)-nwn’r—n)
. R -11 (Unix]
Zilog 280808 (Microsoft) DES PPt (o

OEC PDP-11 {Unix)

DEC VAX
See Intel 8280, 8386. y %cv;\xwmx)

Zilog Z2-88 (MT Microsystems) 1B 3033

See Intel 8200.

Tiny Pescel

i g
{

Modula
UCSD Pascal

Texas instruments 990 #1710
Texas instruments 9800 #15:124
Ziog Z-80 #15:124
Zliog 2-80 #17:88

Zhog 2-80 #15:124

Implementation Reports
Implementation Reporte

.Y

-

Machine (operating system) issue:page Comments
Zilog Z-80 #17:104
Zilog Z-80 #19:123
Zilog Z-80 (CP/MO) #17:103
Zitog 2-80 (TRS-80) #15:124
Zitog Z-80 (TRS-80) #19:124
Zilog 280 #1518
Zilog 280 #15:119
Zilog 28000 #15:119

UCSD p-System Users' Socwety Form UMR:820415

USUS MEMBERSHIP APPLICATION

I am applying for membership as —-—- . anindividuat {(§20.00 U.S.)
- an organization ($500.00 U.S)

These rates are for 12 months of membership

Name ____ . - ———
Affiliation - S
Address S
I Country ——
Phone - TWX/Telex

Option: Do NOT print my phone number in USUS rosters
Option: Print ONLY my name and country in USUS rosters
Option: Do NOT release my name on mailing lists

Computer System:

Z-80 8080 POPILSI-11 6502/Apple 8800 6609 ___ 9900
... 8086 28000 .. _. GA-16 68000 MicroEngine other __ .

Interested in the following Committees/Special interest Groups (SIGs):

~— Advanced Planning Concurrency SIG - . Publications Comm.
—— Apple SIG Educational SIG SW Exchange Library
— —._ Applications SIG Industrial SIG Pascal Standards
Bylaws Committee Medicat Appl. SIG Technical Info.
—---. Communications SIG Meetings Committee User Services
Word Processing

Send check or money order in the amount of $20 (drawn on a U.S. bank or U.S office), payable t
X .S. . 0 U
Chip Chapin, Secretary, USUS, P.O. Box 1148, La Joila, CA 92038-1148, USA.) pay sus. to

USUS stands for the UCSD p-System Users' Society (or the UCSD Pascal System Users’ i i
pronounced “Use Us". The UCSD Pascal System is a machine independent szﬂwaco systemzm l';
facilitate soft ware portability: Pascal was its principal language, but niow other languages such as FORTRAN,
€080t and BASIC are becoming available. The Society was created to promote and influence the devok;pmoni
of, and education and in!ovmaﬁon exchange about the UCSD p-System. To do this, USUS periodicaily hoids
meetings around the United States and publishes a quarterly newsletter to provide its members a forum for

p and o 1 and news about the UCSD p-System and its derivatives. USUS also
Supports a Software Exchange Library from which members can obtain software for a nominal reproduction
charge. Special Interest Groups (SIGs) on topics Including the Advanced Planning of new system festures,
m Pascat and Word Processing have been formed, and others will form as the interest develops. USUS'
is a non-profit organization and is independent of all vendors.

UCSD p-System™ User's Society UCSD Pascai System™ User’'s Soclety

"UCSD p-System” and "UCSD Pascal” are trademarks of the Regents of the Linivershly of Caktornie

Implementation Reports

Welidation Suite Reponts Validation Siite Reponts Vabidstion Suite Reponts Vadidution Suite Ropors Vilidation

HP 3000 Series 33

Authors: Paul J. Campbell and Charles R. Williams
Beloit College, Beloit, WI 53511, USA

Pascal Processor ldentification

Computer: Hewlett-Packard 3000 Series 33 run-
ning under operating system HP 32033 MPE IV Version
C.DO.20

Processor: Pascal/3000 Version HP 32106A.00.03,
which Hewlett-Packard asserts is an extension of the
proposed ANSI Standard Pascal (May 20, 1981 version).

Installation: Beloit College, Beloit, W1 53511, USA

Test Conditions

Tested by: Paul J. Campbell and Charles R. Williams

Date: July-August 1982

Validation Suite Version: 3.0, (issued 8 January
1982), which appears to test agr t with DP7185.1,
the second draft of the proposed 1SO Pascal Standard

Report Sent To:

Lance Carnes, Editor, HP-3000 Special Interest Group
for Pascal (SIGPascal), TEXET Company, 163 Lin-
den Lane, Mill Valley, CA 94941

William J. Cody, Applied Mathematics Division, Ar-
gonne National Laboratory, Argonne, 1L

Jean Danver, Hewlett-Packard Company, Information
Systems Division, 19420 Homestead Rd., Cuper-
tino, CA 95014

Lloyd D. Davis, Editor, Newsletter, HP-3000 Special
Interest Group for Education (SIGED), Director,
Academic Computing Services, 209 Hunter, The
University of Tennessee at Chattanooga, Chatta-
nooga, TN 37402

Bob Dietrich, M.S. 92-134 Tektronix, Inc., P.O. Box
500, Beaverton, OR 97077

_Charley Gaffney, Pascal News, 2903 Huntington Road,

Cleveland, OH 44120

William M. Kahan, Computer Science Dept., Univer-
sity of California, Berkeley, Ca 94720

Emil Knorr, Math. Dept., Shaker Heights High School,
Shaker Heights, OH

John Nierengarten and Dan Abts, Computer Center,
University of Wisconsin, LaCrosse, W1

John R. Ray, Editor, Journal of the HP-3000 Interna-
tional Users Group, The University of Tennessee-
Knoxville, Knoxville, TN 37401 :

Mike Riedel, Software Engineer, Hewlett-Packard, 150
S. Sunny Slope Rd., Brookfield, W1 50005

Arthur Sale, Dept. of Information Science, University
of Tasmania, Tasmania, Australia

Richard Sours, Math. Dept., Wilkes Coliege, Wilkes-
Barre, PA

B. A. Wichmann, NPL

Introduction

**Pascal/3000 [also referred to as HP3000 Pascal]
is a superset of Hewlett-Packard Standard Pascal
. . .; HP Standard Pascal, in turn is a superset of Amer-

Vilidation Suite Reports

ican National Standards Institute (ANSI) Pascal’’
(Pascal/3000 Reference Manual, p. 1-1).

Programs in the validation suite were compiled
with the compiler option ANSI ON, so that the com-
piler would issue a warning when it encountered fea-
tures not legal in ANSI Standard Pascal. In the sections
below, warnings of this nature are either mentioned ex-
plicitly or the feature involved is marked as a feature
of HP Standard Pascal. The validation suite itself con-
tains some defective tests. Those previously reported
by Wichmann[1983] are marked **ignore test output per
Wichmann.”

Principal Deviations

e GET is impl d as a ‘deferred’’ get in or-
der to facilitate interactive /O

e real numbers are not written correctly to files

® a FOR loop variable may be altered from within
its loop, and it is still defined after pletion of the
loop

o pointers which are still needed are allowed to be
disposed, and pointers with explicit tag values are han-
dled incorrectly

® a procedure call may be bound to a wrong de-
fining occurrence

® the LN function has large relative errors (about
10%) for arguments near 1

e OTHERWISE and subrange-like lists may be
used as case-selector elements

o the predefined type LONGREAL is available

@ the predefined type STRING is implemented as
a PACKED ARRAY OF CHAR with a declared maxi-
mum length and an actual length that may vary at
runtime

® primitives are provided for manipulation of ob-
jects of type STRING

o a function may return an object of structured
type

® constructors are available for assigni
values to objects of structured types

o values of user-defined enumerated types can be
directly written to and read from files

© apacked array of CHAR can be read with a sin-
gle READ command

® a subprogram in any of the languages SPL, For-
tran/3000, Cobol/3000, and Pascal/3000 can be called by
a program in any of the other languages

® conformant arrays are not handled

CONFORMANCE TESTS

Number of tests run 154
invalid 3
irrelevant 0
passed 149
failed (number of causes) 22
detecting compiler bugs 0

47

ry

Tests invalid

6.4.3.3-5 — Ignore test output per Wichmann.
Compiler does not permit an uniitialized empty record
to be accessed.

6.5.1-1 — Ignore test output per Wichmann. Sec-
tion 6.10 of 7185.1 (ISO second draft) demanded that
**Each program parameter shall be declared in the var-
iable-declaration-part of the program-block.”” The
wording of 6.10 was changed in the ISO third draft to
‘*Each program parameter shall have a defining-point
as a variable-identifer for the region that is the program
block.’" Either wording affects the parameters **name""
and '‘firstname”” in this program.

6.6.6.5-1 — Ignore test output per Wichmann.
Compiler issues no warning or error message.

6.9.3.5.1-1 — Ignore test output per Wichmann.
Still, the floating-point representation of real numbers
is not written correctly to textfiles. The compiler fails
to write the initial space required before each non-neg-
ative number. (Note: The test does not check writing
of negative reals.)

Details of failed tests

6.7.1-2 — Compiler rejects [x. .y) where x > y,
claiming that a ** set of this size cannot be constructed.”
The standard requires the expression to be interpreted
as the empty set.

6.9.3.5.2-1 — The fixed-point representation of
real numbers is not written correctly to textfiles, as the
number 0.0 is written a .0 instead of the required 0.0.
The compiler omits the initial zero for all positive reals
between 0 and 1.

EXTENSION TESTS
Number of tests run 3

Details of tests

6.1.9-7 — Equivalent relational symbols are not
defined.

6.1.9-8 — None of the alternate symbols %, %=,
.= is defined.

6.8.3.5-16 — The alternative OTHERWISE is ac-
cepted in a CASE statement (HP Standard Pascal
feature).

DEVIANCE TESTS

Number of tests run 115
invalid 2
irrelevant 1
correctly detecting 9]

deviations

true extensions 13
not detecting deviations 8(4)

and not true extensions
(number of causes)
detecting compiler bugs 0

Tests invalid

6.3-7 — The syntax in lines 14 and 15 is incorrect:
the caret symbol ~ should be deleted in both. With these
corrections the compiler deviates from the standard by

48

[SR

allowing the use of NIL in the CONST section.

6.4.6-6 — Program fails to declare program param-
eter f within the VAR section, as required by the stan-
dard. With fcorrectly declared, the compiler passes the
test.

Tests irrelevant

6.4.3.3-7 — This test relies on the compiler de-
viating for tests 6.4.3.3-10 through 6.4.3.3-13, which it
does not.

True extensions

6.1.7-9 — Compiler permits of a single
character, quoted or unquoted, to a PACKED ARRAY
OF CHAR of any positive size. (HP Standard Pascal
feature). It does not allow assignment to a variable of
type CHAR of a (padded or not) PACKED ARRAY OF
CHAR containing a single character.

6.1.7-10 — Padding with spaces is done automati-
cally in assigning a shorter string to a longer one. (HP
Standard Pascal feature).

6.1.7-11-11 — Assignment of a null string is per-
mitted. (HP Standard Pascal feature)

6.1.7-12 — String constants are indexed.

6.1.8-5 — Space may be omitted between a number
and a following word-symbol.

6.2.1-8,6.2.1-10 — Multiple declaration parts are
allowed: the CONST, TYPE, and VAR sections can be
repeated and intermixed. The LABEL section must
still precede, and the procedure and function sections
foliow, the block of CONST, TYPE, and VAR sections.
(HP Standard Pascal feature)

6.3-9 — The value of a declared constant may be
specified with a constant expression. (HP Standard
Pascal feature)

6.4.3.3-8 — A warning instead of an error message
isissued if a case label is not within tag or select expres-
sion range.

6.4.5-12 — To compare two string literals, the com-
piler blank-fills a shorter one. (HP Standard Pascal
feature)

6.6.1-5 — Formal parameters may be repeated in
the subsequent procedure declaration of a FORWARD
procedure. (HP Standard Pascal feature)

6.6.2-5 — A function may return a set, an array, or
a record instead of an object of simple type. (HP Stan-
dard Pascal feature)

6.8.3.5.7 — Subrange-like lists may be used as
case-selector elements. (HP Standard Pascal feature)

Devistions not detected

6.2.1-6 — Declared but unused labels are allowed.
(Note: Such behavior was not prohibited in the first
draft of the 1SO standard, but is prohibited in the sec-
ond and third drafts at 6.2.1.)

6.6.1-3, 6.6.1-4 — A procedure call may be bound
to a wrong defining occurrence: in these cases, to the
outer of the two wrong procedures.

6.6.3-4 — A variable parameter is allowed to de-
note a field which is the selector of a variant-part.

6.8.3.9-7 — Assignment may be made within the
loop to a FOR loop control variable.

Vafidation Suite Reports

e S

6.8.3.9-8 — Compiler fails to detect use of a FOR
loop control variable after completion of the loop. The
value of the variable after completion is the final-value
in the FOR statement.

6.8.3.9-9 — After a FOR loop which is not entered,
the value of the control variable is defined but unknown.

6.8.3.9-16 — The control variable of a FOR loop
may be reassigned by a READ during execution of the
loop.

ERROR-HANDLING

Number of tests run 55
invalid 2
irrelevant 0
passed 34
failing to detect errors 18 (8)

(number of causes)

detecting compiler bugs 1

Tests invalid

6.6.6.5-6 — The test considers it an error if after
REWRITE(fyle), EOF(fyle) is defined. In fact the stan-
dard requires EQF(fyle) to be true under this circum-
stance; it is fyle* that is required to be undefined. The
compiler abides by the standard.

6.9.3.2-3 — The statement REWRITE(f) must be
inserted before the call to write to f. With this correc-
tion, the compiler passes the test.

Details of tests failing to detect errors

6.4.3.3-10 through 6.4.3.3-13 — Undefined tag-
fields in variant records are not detected.

6.5.8-2 — Compiler fails to detect the change in
value of a file buffer variabie when used as a global var-
iable while the buffer variable’s dereferenced value is
passed as a VAR parameter.

6.5.5.3 — Asfor6.5.5-2, except that here the buffer
variable is an element of the record variable list of a
WITH statement.

6.6.2-9 — Compiler does not detect that a function
identifier has not been assigned a value within the func-
tion; the standard requires such a function identifier to
be undefined. (The test would be enhanced by revealing
what value (if any) is assigned by execution of the
function.)

6.6.5.3-6 — Compiler fails to detect disposing of
a pointer variable which refers to a current actual VAR
parameter.

6.6.5.3-7 — Compiler fails to detect disposing,
within the scope of a WITH statement, of a pointer var-
iable which refers to an element of the current record-
variable-list of the WITH.

6.6.5.3-8 through 6.6.5.3-10 — Compiler fails to
detect errors in the use of a pointer variable that was
allocated with an explicit tag value.

6.6.5.3-11 — Pointer still usable after DISPOSE.

6.6.6.5-7 — Compiler fails to detect error of apply-
ing EOLN function to a file for which EOF is true.

6.7.2.2-13 — Error of a negative right operand in
MOD is undetected. (The test would be more valuable
if it revealed how a compiler accepting this construct
handles it.)

Validation Suite Reports

6.8.3.9-19 — A FOR statement control variable is
still defined after the loop is completed: its value is the
final-value in the FOR statement. .

6.9.3.2-4, 6.9.3.2-5 — Compiler detects no erro
when asked to write a real number using 0 digits after
the decimal point.

Tests detecting compiler bugs

6.6.5.2-5 — In order to facilitate 1/O with interac-
tive devices, GET is deliberately implemented as a
*‘deferred’’ GET, which postpones the actual foading
of a component into the buffer variable. Also deferred
are setting the file buffer to undefined and EOF to true.
H the piler should not conform to the stan-
dard's pre- or post-assertions for GET. However, runs
of 6.6.5.2-5 at two different times produced incons!st-
ent results, the compiler failing the test on one occasion
and passing it the other.

IMPLEMENTATION-DEFINED
Number of tests run 14
invalid 2
irrelevant 0
detecting compiler bugs 0
Details of invalid tests
6.6.6.1-1 — A standard function may not be used

as ter to a proced

© 6.6.6.2-11 — Eecause this test relies on non-detec-
tion of underflow at runtime, the procedure MACHAR
has to be modified to trap run-time underflow and con-
tinue execution. (This is accomplished by using th;
compiler library routine XARITRAP). Even with this
modification, the program fails to produce results com-
pletely agreeing with known features of the processor.

Taste . FROGRAN VAL THOE vaLoR
b = {ehers differeat)
sota redix 2
) ammber of digits 18 n
fleating poim
sigmifieead
res rousds t
L] avaber of guard digive .
for multipiicaties
anohep 1.0 o 2P () 10 a
gy 1.0 - 2WED () v n
ey mvmber of dits {imelud- .
ing s1gm) resacved for
axpomnt
ninexp PR iy gualieet s
fleating poim pover
of 2
M ssmem is jergest £ »s
fleating peimt
dover of 2
L) 1.0 0008 O 18 1.19009) 5-07
opsang 1.0 - epeang O 1.0 2% 5-07
mia asalleat flesting Pt. 11000 817
bover of 2
m—_ LINDY BT 195792 L7

largest fleating
o104 sumber

The program assumes that maxexp can be calgu-
lated by adding minexp to a power of 2. This reasoning
fails to account for computers like the one at hand,

49

which have a single exception to their assumption of a
leading 1 preceding the mantissa of a floating point
number: namely, the number with exponent zero and
mantissa zero is interpreted as 0.0, instead of as 2-256.
In fact the compiler can represent all floating point
numbers (within its range of precision) between 2-2%
and 22%, pot including these lower and upper bounds.
The smallest floating point number is

(1 + eps) 2-2% and the largest is (1 — epsneg) 2256

In the other tests using MACHAR, the procedure
is replaced by one simply assigning the known correct
values,

(The following changes should be made in the text
of the long initial comment of the test 6.9.2-6 should be
6.9.1-6 negeps should be negep, and it is the largest in
magnitude negative integer . . .)

Details of impl ion-d denci

o L4

6.1.9-5§ — The alternate comment delimiters (*,
*) are implemented.

6.1.9-6 — The equivalent symbols @ for up-arrow
and (. , .) for braces are implemented.

6.4.2.2-10 — MAXINT = 2147483647 = 23— 1

6.4.3.4-5 — The base-type of a set may have as
many as 32768 elements, according to Pascal/3000 Ref-
erence Manual.

6.7.2.3-3, 6.7.2.3-4 — In test of short-circuit eval-
uation of (A AND B) and (A OR B), only the first
expression A is evaluated. It is possible to force full
evaluation by using the compiler command PARTIAL-
_EVAL OFF, the default being ON.

6.8.2.2-1, 6.8.2.2-2 — Evaluation precedes selec-
tion in the assignments A[l] := expression, p* :=
expression,

6.8.2.3-2 — Actual parameters to a procedure are
evaluated in forward order.

6.9.3.2-6 — default field widths are

integer 12 characters
boolean varies according to the boolean value
real 1 12 characters

6.9.3.4.1-2 — The number of digit characters writ-
ten in the exponent of a real value expressed in floating-
point format is 2.

6.9.3.6-1 — The representations of true and false,

with parentheses to indicate width, are

(TRUE) (FALSE)

QUALITY

Number of tests run 61
invalid 0
irrelevant 0
passed 48
failed (number of causes) 13 (9)
detecting compiler bugs 0

Details of some tests passed

1.2-1 — General check on execution speed: the
program executes im 11.2 sec., corresponding to 89
thousand whetstone instructions per second.

1.2-2 — GAMM e: The prog [

3 million GAMM units in 160.8 sec, for a GAMM meas-

50

ure of 53. The values printed are ACC = 16.7319145,
ACC1 = .0016733; the value for ACC should be
16.73343.

1.2-3 — Speed of procedure calls: The program
contains 228,057 procedure calls, and executes in 20.0
sec., for an average of 11,400 calls per second, or an
overhead of 88 microseconds per call.

6.4.3.4-4 — Warshall’s algorithm executes in 0.8252
sec. (average of five runs) and requires 2330 bytes of
storage for all varibles.

6.6.5.3-12 — This test program must be compiled
with the Pascal/3000 compiler option HEAP_DISPOSE
ON; the default setting is OFF. (This option is not avail-
able in the HP Standard Pascal subset.)

6.8.3.5-12 — Use of a case constant of the same
base type as the case selector — but outside the sub-
range of the case selector type — results in a compile-
time error.

Details of tests failed

6.1.5-9 — Very large values: Each very large value
produces an error message.

6.1.8-6 — Compiler fails to issue a warning for a
possible unclosed comment.

6.4.3.2-6 — The index type of an array may not be
INTEGER, and the compiler prints an appropriate er-
ror message.

6.4.1-2 — Fewer than 300 identifiers are allowed
in a declaration list.

6.6.6.2-8 — Test of EXP function produces loss of
7 base 2 significant digits for arguments —103.762 and
115.1674. See note below on 6.6.6.2-10.

6.6.6.2-9 — Tests of SIN and COS functions pro-
duce respective losses of 16 and 15 base 2 significant
digits for respective arguments 18.84967 and 23.56232.
See note below on 6.6.6.2-10.

6.6.6.2-10 — Test of LN function fails because of
large relative errors (about 10%) for arguments near 1.
Since the Pascal/3000 compiler calls system library rou-
tines to calculate EXP, SIN, COS, and LN, other com-
pilers and interpreters which also use those routines
(e.g., Fortran/3000, Basic/3000, etc.) inherit the same
inaccuracies.

6.8.3.4-2 — IF statements can be nested only 11
deep, not 24,

6.8.3.5-15 — CASE stat
11 deep, not 15.

6.8.3.8-3 — WHILE statements can be nested only
14 deep, not 15.

6.8.3.9-20 — FOR loops can be nested only 11
deep, not 20.

6.9.1-8 — Test of accuracy of read/write for reals
fails. Result was too large 47 times, equal 0 times, and
too small 53 times. See 6.9.3.5.2-2 for underlying
explanation.

6.9.3.5.2-2 — Test to check accuracy of write for
reals produces repeated error message *‘input incorrect
— nondigit read.”” The standard (6.9.4.5.2 of second
draft, 6.9.3.4.2 of third draft) requires that WRITELN
(X:33:30) write 30 digits after the decimal point. Pascal/
3000 Reference Manual (p. 6-41) notes that in no case
will more digits be printed than are in the internal rep-
resentation. The input errors (‘'non-digit read’’) are

ts can be d only

Validation Suite Reports

from all of the leading blanks the compiler inserts to
right-justify the shorter output. Using ju}t WR!-
TELN(X) gives agreeable resuits. (The behavior of_ this
compiler seems more reasonable than that prescribed
by the standard.)

LEVEL 1 (CONFORMANT ARRAYS) TESTS

Number of tests run 11

irrelevant 11

6.6.3.7-1 through 6.6.3.7-10, 6.6.3.8-1 — Ignore
test output per Wichmann. Conformant arrays are not
handled by Pascal/3000.

Concluding Comments

Compiler errors discovered by users of Pgscal/
3000 and reported to Hewlett-Packard are published
monthly in the Software Status Bulletin for Program
Team 3000. Most of these errors involve extension or
other feature which do not involve the Pascal standard,
but some involving the standard were not caught by the
Validation Suite:

o Integer multiplication by (— 1) crashed an carlier
version (Version 00.00) of the compiler .

® The invalid use of declared variables which are
accessed within binary and unary expressions — but
which never have values assigned to them — is not al-
ways detected, although one instance was caught by
Test 6.2.1-11 N

o compiler erroneously allows redefinition of the
reserved word WRITE as the name of a procedure

(The Software Status Bulletin also features some-
times-amusing advice under ‘‘Temporary Solution,

such as

o Ignore it [the message to inform HP if a certain
€ITOT OCCUrS), your program is cotrect and can be run
* u.. Use a real filc name [instead of '] .

o Do not take advantage of the fact that this error
is not detected, because it will be.)

References

Addyman, A_,eral., ISODP/7185 — A Draft Proposed
Standard for the Programming Language Pascal
Pascal News Number 18 (May 1980) 2-70. [*I1SO
First Draft] .

Differences Between the Draft International and Amer-
ican Pascal Standards, X3J9/82-102 JPC/82-102, 5

pp- .
DP718$ Specification for the Computer Programming
e Pascal 97/SC 5 N 595 (January 1981),‘}’as-
cal News Number 20 (December 1980) 1-83. [* ISO
Second Draft'’] .
DP718S Specification for the Comp Programming
Language Pascal 97/SC 5 N 6d78 (4 November 1981),
88 pp. [**1SO Third Draf’’]

HP 3000 Support Systems, Pascal/3000 Reference Man-

ual, 1t Edition, December 1981. .
Joint ANSUX3J9 IEEE Pascal Standards Committee,
American National Standard Programming Lan-
guage Pascal, Second Draft, 15 July 1982, Foreword

+ 81 pp.

Software Status Bulletin for Program Team 3000.
Wichmann, B.A., Status Report on Version 3.0 of the
Pascal Test Suite, Pascal News Number 24 (January
1983) 20-22. PUG

Intel 8085, Zilog 80 (Cogitronics)

Pascal Processor Identification

Target computers: Z80, 8085 .

Host computers: GenRad ADS 2300; Tektronix
8002A, 8550; CDC Cyber (6000 series)

Planned host computers: DEC PDP-11; IBM 370;
CPM compatible systems

Processor: Cogitronics Pascal V1.2C

‘Test Conditions

Time: December 1980
Tests carried out by: D. Dunstan
Validation Suite Version: 2.2

Restrictions and Extensions

Due to the byte addressable nature of the target
machines, PACK and UNPACK procedures are not
supported. .

PACK is ignored in declarations.

Strings are compatible if their lengths are the same.
The lower bound of the index type need not be one.

No runtime checks are made.

The result of a function may be any data type (other
than file.)

validation Suite Reports

Procedures and functi may not be used as

ters.

PAGE procedure is not supported. .

A GOTO target must be within the current routine
or the mainline.

No restrictions are placed upon the FOR loop con-
trol variable.

The standard files INPUT and OUTPUT are al-
ways opeped automatically whether or not they are
mentioned on the program header.

Implicit references to the standard files INPUT
and OUTPUT are always possibie, even when the iden-
tifiers INPUT and OUTPUT have been redefined.

Number of tests att
Paseed: 127
Failed due to restrictions and extensions: 7
Failed: 5

d: 139

Detalls of failed conformance tests
6.4.3.3-1 — Test does not conform to current ISO
standard.

51

. rYy

6.6.3.1-1 — Test does not conform to current 1SO
standard.

6.9.4-4 — Test does not conform to current ISO
standard.

6.9.47 — Test does not conform to current ISO
standard.

Deviance Tests
Number of tests att
Passed: 67
Failed due to restrictions and extensions: 23
Failed: 4

d: 94

Details of falled deviance tests
6.1.5-6 — Test does not conform to current ISO
standard.
6.4.6-11 — No check for fields of type file.
6.6.1-6 — No check for procedures or functions
that are declared FORWARD but are never defined.
6.6.2-5 — No check to verify that the function
identificr is defined within the function.

SR v r e e L e

MY s

Error Handling Tests
Number of tests attempted: 46
: 7

Failed due to restrictions and extensions: 39

Failed: 0
Implementation Defined Tests
Number of tests att pted: 15
Passed: 12
Failed due to restrictions and extensions: |
Falled: 2

Details of failed implementation defined tests

6.11-2 — Alternate operators not allowed.

6.11-3 — Alternate operators not allowed.
Quality Measurement Tests

Number of tests attempted: 23

Passed: 21

Failed due to restrictions and extensions: 2
Failed: 0

Extension Test

Otherwise is implemented as described in the cur-
rent I1SO standard. pPUG

IBM 370 (AAEC)

Pascal 8000 Version 2.0 Validation Suite Report
IBM 370 (AAEC)

Validation Suite Results

Pascal Processor Identification

Computer: IBM 370/168, Modei 3
Processor: Pascal 8000, Version 2.0 (27JUL80)

Test Conditions

Tester: Joseph A. Miner, Cornell Computer
Services

Date: July 1980

Validation Suite Version: 2.2

Note: In the body of this report, the words *'ISO
Draft Standard Pascal™* and **the ISO Draft Standard™
refer to the Draft Pascal Standard ISO DP/7185 pub-
lished in the April 1980 issue of Sigplan Notices and the
May 1980 issue of Pascal News.

Conformance Tests

Number of tests passed: 126 (2 were repaired)

Number of tests failed: 3 (1 basic cause)

Tavalid tests discovered: 10

Details of Repaired Tests:(These tests passed after
the errors noted were fixed.)

Test 6.6.1-6 was missing a semicolon in the main
program after the call of procedure one.

Test 6.6.3.3-3 had type compatibility errors be-
cause of anonymous pointer types.

Details of failed tests: Tests 6.4.3.5-2, 6.4.3.5-4, and
6.9.1-1 fail because 0S/360 requires that at least one
data character be written on each line of a text file (two
if the file contains ASA control characters). Zero length

52

records may not be written.

Detalls of invalid tests: Tests 6.1.2-3 and 6.3-1 re-
quire that identifiers that are identical in the first eight
characters be distinguished. Both tests p d after the
identifiers were changed.

Test 6.1.8-3 shows that ecither form of comment
delimiter may end a comment, as specified by the ISO
Draft Standard.

Test 6.4.3.5-1 contains an invalid file type decla-
ration (**file of ptrtoi”’, where ptrtoi is a variable name,
not a type).

Test 6.5.1-1 attempts to define a file of files.

Tests 6.6.3.1-1 is invalid since one of the actual pa-
rameters is not of the same type as the corresponding
formal variable parameter.

Test 6.6.3.1-5 contains invalid syntax for an actual
procedure parameter.

Test 6.6.3.4-2 contains invalid syntax in a formal
procedural parameter specification.

Test 6.9.4-4 compares a line previously written to
a string constant. The string constant does not match
the format used to write the line. (The test succeeds if
appropriate changes are made to the program.)

Test 6.9.4-7 cxpects boolean values to be left jus-
tificd when written to a text file. The 1SO Draft Stan-
dard specifies that writing a boolean value to a text file
is equivalent to writing the string ‘true’ or ‘false’.
Therefore the values should be right justified.

Note: Several tests contain declarations of iden-
tifiers that are identical in the first eight characters
(6.1.2-3,6.3-1,6.4.5-5, and 6.8.2.2-2). Because the Val-
idation Suite assumes that the processor only need dis-
tinguish identifiers that differ within the first eight char-
acters, these tests have been reported here as “*Invalid
Tests™". A more recent version of the ISO Draft Pascal

Vaiidation Suite Reports

et AR i e S o e

Standard (ISO DP/7185) appears to require that a con-
forming processor distinguish identifiers that differ in
any character position.

Deviance Tests

Number of deviations correctly detected: 87

Number of tests not detecting erroneous deviations:
3 (1 basic cause)

Number of tests showing extensions:2

Invalid tests discovered: 3

Details of extensions: Test 6.8.3.5-12 shows that
subrange-like lists are allowed as case-constant
elements.

Test 6.8.3.5-14 shows that the **otherwise’’ clause
is allowed in case statements.

Details of deviations not detected: Tests 6.8.2.4-2,
6.8.2.4-3, and 6.8.2.4-4 show that it is possible to
branch into if statements, between branches of a case
statement, and into a case statement.

Details of invalid tests: Test 6.1.5-6 shows that
lower case ‘e’ is allowed in an unsigned-real number,
as specified by the ISO Draft Standard.

Test 6.2.1-5 contains a label that is declared but
never defined or referenced. This is aliowed in the cur-
rent version of the Standard. (The compiler issues a
warning message in this case.)

Test 6.4.5-5 declares identifiers that are not unique
over the first eight characters. The deviation is cor-
rectly detected if appropriate changes are made to the
identifiers.

Error handling

Number of errors correctly detected: 30

Number of errors not detected: 16 (7 basic causes)

Details of errors not detected: Tests 6.4.3.3-5, 6.4.3.3-
6, 6.4.3.3-7, and 6.4.3.3-8 show that the variant fieids
ofarecord are not ‘‘undefined’* when the tag field value
is changed.

Test 6.4.3.3-12 shows that assignment of an unini-
tialized empty record is not detected.

Test 6.4.6-7, 6.4.6-8, and 6.7.2.4-1 show that as-
signment of a set expression containing elements that
are not within the subrange base-type of the destination

7 shows maxint to be 2147483647.

Test 6.4.3.4-2 shows that a set of char is allowed.

Test 6.4.3.4-2 shows that sets must be of 64 ele-
ments or less, with sets of integers falling in the range
0..63.

Test 6.6.6.1-1 shows that standard functions may
not be used as actual function parameters.

Test 6.6.6.2-11 displays some characteristics of the
floating-point arithmetic. The results are reproduced in
section 2 of this report. (‘‘Floating-Point Arithmetic
Characteristics"’, below).

.. Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean
P i are pletely evaluated in all cases.

“Tests 6.8.2.2-1 and 6.8.2.2-2 show that the variable’

on the left hand side of an assignment statement is se-

fected before evaluation of the exp on the right
hand side.

Test 6.9.4-5 shows that two digits are written in an
exponent.

Test 6.9.4-11 shows that the defauit field widths for
output are integer — 12; Real —24; Boolean — 4 if true,
5 if false.

. Test 6.10-2 shows that the operation
REWRITE(OUTPUT) is permitted

Tests 6.11-1, 6.11-2, and 6.11-3 show that alterna-

tive comment delimiters, as well as the symbols (. .)

and ™ are implemented. (Also implemented are the
symbols ™= & and})
Quality Measurement

Number of tests run: 23 (8 modified)

Results of tests: Test 5.2.2-1 shows that different
identificrs that do not differ in the first eight characters
are not flagged.

Test 6.1.3-3 shows that identifiers are distinguished
only over eight characters.

" Test 6.1.8.4 shows that a semicolon or open com-
ment symbol within a comment is flagged with a warn-
ing message.)

~ Tests 6.2.1-8, €.2.1-9, and 6.5.1-2 show that long
lists of types, labels, and variables are allowed in their
tive definition parts.

set is not detected if all the el of the exp
set have ordinal values in the range 0..63.

Tests 6.6.5.2-6 and 6.6.5.2-7 show that a file vari-
able may be modified while the associated buffer vari-
able is an actual variable parameter.

Tests 6.6.5.3-5 and 6.6.5.3-6 show that a variable
may be DISPOSED while it is an actual variable
parameter. .

Tests 6.6.5.3-7, 6.6.5.3-8, and 6.6.5.3-9 show that
variables created by the variant form of NEW may be
used in expressions and on the left hand side of assign-
ment statements.

Implementation Defined

Number of tests run: 15

Number of tests repaired: 1

Details of repaired test: Test 6.8.2.2-2 contains type
compatibility errors caused by anonymous pointer
types.

Details of impk ion-d d

P

Test 6.4.2.2-

Validation Suite Reports

Test 6.4.3.2-4 shows that array [integer] is not
allowed.

Test 6.4.3.3-9 shows that variant fields of a record
type are overlaid in the order of definition.

Test 6.4.3.4-5 (Warshall's algorithm) uses 0.134
seconds of processor time with all execution tests en-
abled, and 0.067 seconds without tests. (By compari-
son, the program uses 0.816 seconds on a B6700 with
the Tasmania compiler).

Test 6.6.1.7 shows that five levels of procednre or
function nesting is allowed.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and
6.6.6.2-10 show that the sqrt, arctan, exp. ln, and sin/
cos functions are implemented without any significant
error. (Details in section 2 of this report, below.)

Test 6.7.2.2-4 shows that division by and into neg-
ative operands is imp d i ly, that the
quotient is trunc(a/b) for negative operands, and that
mod yields remainder of div with negative operands.

Test 6.8.3.5-2 shows that unreachable case branches
are not flagged.

Test 6.8.3.9-8 shows that at least 256 branches are
allowed in a case statement.

Test 6.8.3.9-18 is not relevant, since use of a for
statement control varible after termination of the loop
is detected as an error.

Test 6.8.3.9-20 shows that for statements may be
nested at least 15 levels.

Test 6.8.3.10-7 shows that with statements may be
nested at least 15 levels.

Test 6.9.4-10 s hows that output is flushed at the end
of the job.

Test 6.9.4-13 shows that recursive /O to the same
file is allowed.

Details of Modifications

Test 6.4.3.4-5 was modified to use the Pascal 8000
CLOCK function to calculate the processor time used
by the program.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9,
6.6.6.2-10, and 6.6.6.2-11 were modified to disable
arithmetic interrupts during execution. These tests gen-
erate exponent underflow interrupts that are normally
trapped and treated as an error.

Test 6.9.4-14 was modified to remove the unde-
clared and unused file F from the program statement
parameters.

Compilation Speed

Several programs were compiled on the IBM 370/
168 Model 3 processor using the VM/370-CMS oper-
ating system release 6.8 with Basic System Extensions
release 2. The virtual CPU times used to compile the
programs were recorded. CPU times include time spent
interpreting the PASCAL EXEC command file and
compiler program loading and initialization. The ver-
sion of the compiler used was compiled with all exe-
cution tests disabled and without any traceback
information.

Five programs containing a total of 13,875 lines of
code, ranging from 1829 to 3706 lines each, were com-
piled. When the programs were stored in files contain-
ing variable length records with trailing blanks re-
moved, compilation speed was about 30,000 lines per
minute, with a range of 23,000 to 45,000 lines per min-
ute. The average speed was around 1,030,000 charac-
ters per minute.

When the programs were reformatted in files with
fixed-length 80-byte records, compilation times de-
creased about 2%. The average number of lines per
minute increased slightly to 31,400, and the number of
characters per minute increased about 145% to 2,-
510,000. This increase in speed is apparently due to re-
duced CMS overhead when processing files with fixed-
length records, and high-speed skipping of blank char-
acters by the compiler.

Floating Point Arithhmetic Characteristics

Several of the Validation Suite programs test the
quatity of the floating point arithmetic and mathemati-
cal functions. These results are summarized here.

54

N

The programs were written by W. J. Cody of Ar-
gonne National Laboratory and revised for Pascal by
R. A. Freak, University of Tasmania. Parts of the pro-
grams are based on an algorithm by M. Malcolm (CACM
15 (1972), pp. 949-951), with some of the modifications
suggested by M. Gentleman and S. Marovich, (CACM
17 (1974), pp. 276-277).

Machine Characteristics
Radix of Representation Beta = 16
Number of base Beta digits in T=14
significand
Chopping is used (not rounding) Rnd = 0
More than T base Beta digits NgRd = 1
participate in post
normalization after
multiplication
Number of bits in exponent {Exp=7
representation
Smallest positive number s.t. Eps = 2.2204e-16
I+ eps<>1
Smallest positive ber s.t. EpsNeg =
1-EpsNeg<> 1 1.3878e-17
Smallest positive number XMin = 5.3976e-79
Largest positive number XMax =
7.2370e+75

Arithmetic Function Quality

In the twelve quality tests, various identities were
tested with 2000 arguments randomly chosen from a
logarithmic distribution over the stated range. The tests
are identified by the following numbers:

1o aqrtlx*x) - x = 0,9

2. arrtan(x) = tryncated taylor ssries.

S arstan’x) = aratan(1/16) + arntan({x-1/16)/(1+x/16))
4. 2 * arntan(x) = arctan(2x/(1-x%x))

Se mplx = 2.9629) = expl x)/axp(0.0625)

Ay oaxplx - 7,8104) = exp(x)/exp(2.912%)

7. 1nfx) = Taylor series expansion of tn(1+y)

8 an(x) = 1n(17x/16) - 1n(17/16)

3. 1afx) = 1n(11x/10) - 1n(11/10)

13 Inl{x*x) = 2> # pniy)

1.

12,

ain{x}) = $%3inlx/3) - 4%ain(x/3)%*3
~on(x) = A%20u’ x/5)8%5 _ shegq(x/3)

Table format

From left to right: the test number, the argument
range, the number of times the result was too large or
too small, the mean relative error in decimal and hex-
adecimal, the maximum relative error and the argument
value at which it occured, and the root-mean-square
error in decimal and hexadecimal. (See Table I on fol-
lowing page.)

Modifications to the Validation Suite

The following modifications were made to the test
programs before they were processed.

Vaiidation Suite Reports

e semrAn e e

e e e o ol B g <

SRR Lo PR o L S

Table |
ot r e ——————— e - —— O o o an 'S -
iTest! Range :Large | Mean Relative{Max Relative |RMS Relative :I
i small l} Error Error, @ arg | Error *‘
]
i e St Tome——- ToT s et eseee= === -
i 11 2.5000e-01 | 0 | -1.7565e-17 | 1.1077e-16 | 2.9011e-17 |
|1 1.000e+00 i 919 | 16%%-13.92 ; @2.5058e-01 | 16%**-13.T3 .
S A S e -4
Pt 1 1.0000e+00 | 0 |
i 4.0000e+00 | O :| 4
i
S SR S SRRSO, BRI
{21 -6.250e-02 | 29) 3.4137e-19 r 6.04320-17 3.2065e-18 i
i 6.2500e-02 E 0 I: 16%%.15,34 . @1.4%39e-02 i 16“-14.534
bttt bttt romSm-— f""""'f'f‘?““ """"" h Sututteinteiede it
V3 6.2500e-02 | 1438 | 7.6733e-17 | 2.215%e-16 | 9.8159e-17 ;
! | 2.6795e-01 | 0 16%%.13,38 | @1,2595e-0t | 16“-13.294.
fommm b Jemaman frm—————— - mfemm e ————
! 41 2.6795e-01 | 1776 | 4.6553e-17 1.5834e-16 5.5639e-17 ;
i 4.1421e-01 | 42 | 16"%.13.56 | @3.1675e-O1 16"-13.504.
1
S DR I A
|4 4.1421e-01 | 1358 4.0699e-18 | 2.2186e-16 | 5.5398e-17 5
i 1.0000e+00 | 193 16%%.14.44 | @5.4685e-01 : 16"-13.504
1
SRR L, R, e mcemmmeem e
|5 | -2.8407e-01 | 728 | -4.0753e-17 2.2279e-16 i 8.7417e-17 ;
! 3.4657e-01 | 181 | 16%%.13.61 | @5.9158e-02 16"-1).54+|
i T Frmmm—— Pemmmm—mmman o
| 6 | ~3.4657e+D0 | 579 | -2.2268e-17 2.2048e~16 5.8089e-17 i
! | =1.4002e+02 | 207 16%4.13.83 ,@-8.8676e+01 16"-13.484.
J —— e O IS SRR SRR
N 6.9315e+00 | 576 | -2.38Tte-17 2.2198e-16 | 6.0656e-17 i
i b 1.7457e+02 | 198 | 16%%_13.80 | @1.0817e+02 16“-13.474.
]
""" et ntndhadadd ittt chesbedend hubindnd thatnshes
HE 9.9998e-01 | 550 | -2.0664e-17 4.3116e-16 4.1493e-17 ;
l 1.0000e+00 414 16%%.13,86 | @1.0000e+00 16"*_13.60 *.
A e Fo————— P o - .- adal dabuindadededadebeliadededesh daskuiadashudbadbet e -
i 81 7.0710e-0t 0 | -1.0709e-17 | 2.1473e-16 | 6.3062e-17 i
| 9.3750e-01 757 .: 16%%-14.09 | @9.3741e-01 16%%_13_45 |
JE 9 . 3.162%e-01 0 T -1.0710e-17 3.72%34e-16 | 9.9664e-17 }
Jlr ' 9.0000e-0t | 1072 16%%-14.09 | 88.9347¢-01 16“-13.29*.
S A . i
110 1.6000e+01 | 1503 | 2.2%328e-17 1.1152e-16 i 3.1590e~17 ;
i 2.4000e+01 | 0] 16%*.13.83 | @1.9817e+01 16“-13.701,
] i]
----- e TSt Atk T - j
! 11] 0.0000e+00 | 1676 | 7.10442-17 | 3.68312-16 9.4375e-17 i
i 1.5708e+00 | 122 | 16%*_13.41 | @1.8953e-01 16%%.13.31 i
] 1
T B LS, L, RN I ——
HER] 1.8350e+01 | 304 | -6.2493e-15 2.7247e-12 6.6908e-14 ;
H 2.0420e+01 | 1662 | 16%*-11.80 | @1.8850e+01 16“-10.944
$omee ; r--- -
112 2.1991e+D1 | 1891 | 5.6811e-15 | 1.3817e-12 ; 4.0160e-14 i
| b2.3562e+01 | 93 | 16%*.11.83 | @2.3561e+01 | 16%%-11,13
¥ - - re Y U U - +

Validation Sulte Reports

re

Character Set Changes

® The curly brace (‘{* and ‘}’) characters were
changed from standard EBCDIC to the text printing
(TN) character set.

® The EBCDIC not symbols used for the Pascal
up-arrow character were changed to ‘@’

Several changes were needed so the file of test pro-
grams could be processed by the skeleton program sup-
plied with the test suite.

® Sequence numbers were removed and all lines
were truncated to 72 characters or less.

¢ The heading comment of test 6.8.3.4-1 was miss-

ing a comma after the test number, which caused the
skeleton program to stop.

® Test6.6.1-7 and 6.6.5-3 fail to end with a line con-
taining ‘end.’ written in lower case in columns one
through four.

® The last line in the file is not a complete heading
comment with a test number of 999 (it consists only of
‘{T999’). The skeleton program failed to stop correctly
at the end of the file.

Additional repairs made to individua! programs are
noted in the Validation Suite Report. These repairs deal
with programming errors or similar problems. pyg

Pascal

1100

Pascal Processor Identification

Computer: Univac 1100/60

Processor: Pascal 1100 — Enhanced descendant of
U.S. Naval Ocean Systems Center compiler developed
by M.S. Ball

Version 2. 1[LR, Updated 10/26/81

Note: This is not a Univac supported product.
However, versions of it are available through the Uni-
versity of Maryland.

Test Conditions

Tester: 1. L. Ruben (‘*unofficial®’ maintainer of the
compiler)

Date: October 1981

Validation Suite Version: 2.2

Conformance Tests

Number of tests passed: 125

Number of tests failed: 14 (10 basic causes)

Details of falled tests: Test 6.2.2.3 contains a scope
error which is not detected by the compiler.

Test 6.2.2.8 fails because the compiler restricts as-
signment to a func tion identifier to that function's block
level.

Tests 6.4.2.2-5 and 6.4.2.2-6 fail because the
expression is too long for the code generation scheme
utilized. Note however, that the ASCII collating se-
quence is used, so that these tests would pass if the IF
statements were broken up.

Test 6.4.3.5-1 fails because the compiler only al-
lows a file declaration consisting of a file of type. The
test has a file of variable (7777).

Tests 6.4.3.5-2, 6.4.3.5-3, 6.9.1-1, and 6.9.4-4 fail
because characters are written to 1100 text files in mul-
tiples of 4, padding with blanks if necessary. Thus, the
eoln and eof functions do not occur where expected in
these tests.

Test 6.5.1-1 fai Is because a file of a type, where the
type contains (or is) a file type, are not permitted by the
compiler (i.e., a file of files is not supported).

Test 6.6.5.2-3 fails because a reset is not allowed
on a file that was never written to.

Test 6.8.3.9-7 fails due to a infinite loop introduced

56

by bad code generation in loop termination tests in-
volving maxint.

Test 6.9.4-6 fails because a string is always entirely
displayed, even if its field width is smalter.

Test 6.9.4-7 fails because TRUE is right justified.

Deviance Tests

Number of deviations correctly detected: 54

Number of tests showing true extensions: 9

Number of tests not detecting erroneous deviations:
31 (13 basic causes)

Details of extensions: Tests 6.1.5-6 shows that lower
case e may be used in real numbers (e.g. 12.34¢-12).

Tests 6.1.7-4, 6.1.7-9 (cases | to 4), 6.1.7-10, and
6.4.5-11 show that a right-hand side string constant (or
value procedure parameter) is made the same length
(padded with blanks or truncated) as the left-hand side
(or formal parameter). In other words, string constants
are made to conform across binary operators and
assignment.

Test 6.4.2.4-2 shows that real constants are per-
mitted in a subrange declaration.

Tests 6.8.3.5-12 and 6.8.3.5-13 show that a sub-
range used for a CASE tag is accepted. Also, overlap-
ping and duplicate ranges are detected.

Test 6.10-1 shows that “‘output’* is a predeclared
file (note, *‘input’’ is also).

Details of deviations not detected: Test 6.1.2-1 shows
that the reserved word NIL may be redefined.

Test 6.1.7-6 shows that the index bounds of a string
are not restricted to 1. .n.

Tests 6.1.7-7 and 6.1.7-8 show that strings are per-
mitted to be an array of a subrange of char.

Tests 6.2.2-4, 6.2.2-7, 6.3-6, and 6.4.1-3 contain a
scope error which is not detected by the compiler.

Tests 6.4.5-2, 6.4.5-4, 6.4.8-5 and 6.4.5-13 indicated
that type compatibility is used with VAR parameters
rather than enforcing identical types.

Test 6.6.2-5 shows that a function without an as-
signment to the function variable in its block compiles
and runs.

Tests 6.6.3.5-2, 6.6.3.6-2, and 6.6.3.6-4 fail because
parameter base types are the same (integer).

Validation Suite Reports

b

S

IR ST Sy

Tests 6.8.2.4-2, 6.8.2.4-3, and 6.8.2.4-4 show that
a GOTO between branches of a statement is permitted.

Tests 6.8.3.5-10 and 6.8.3.5-11 show that the com-
piler accepts case tags which are the same type as the
index, although a real index is flagged as an error.

Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4, 6.8.3.9-16, and
6.8.3.9-19 show that an assignment to a FOR control
variable is permitted within the loop.

Tests 6.8.3.9-9 and 6.8.3.9-14 show that the FOR
control variable may be declared anywhere, so long as
it is declared at the same or outer block (this excludes
formals, pointers, and record components).

Test 6.9.4-9 indicates that 0 and negative field
widths may be used in a write statement.

Test 6.10-3 shows that ‘‘output’’ can be l:edcﬁned
and yet still be used as the default file for write state-
ments (similarly for ‘‘input’’).

Error Handling

Number of errors correctly detected: 18

Number of errors not detected: 28 (13 basic causes)

Details of errors not detected: Test 6.2.1-7 shows
that local variables are not preset to *‘undefined™’.

Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, and 6.4.3.3-8
indicate that no checking is performed on the tag field
of variant records. .

Tests 6.4.3.3-12 shows that an assignment 10 an
empty record is not detected. .

Tests 6.4.6-7, 6.4.6-8, and 6.7.2.4-1 indicate that no
bounds or overlap checking is performed on set
operations. . .

Test 6.6.2-6 shows that the use of a function Wltl'l-
out an assignment to the function-value-variable is
permitted.

Tests 6.6.5.2-1 and 6.6.5.2-2 fail because I/O has
not been impiemented according to the standard. Also,
characters are written to 1100 text files in multiples of
4, padding with blanks if necessary. Thus, eoln and eof
do not occur where expected in the tests.

Tests 6.6.5.2-6 and 6.6.5.2-7 fail because the com-
piler does not detect (invalid) operations on buffer var-
iables p d as a procedure or function parameter or
changed within the range of a WITH statement..

Tests 6.6.5.3-3 and 6.6.5.3-4 fail because dispos.e'
(under full memory management support) *‘ignores
pointers that do not point to the heap (NIL has the value
0). Note, Pascal 1100 supports three levelclof memory
management configurations (under user option). Under
the other two configurations, these tests pass.

Test 6.6.5.3-5 fails because dispose _successmlly
releases the space allocated by new (is this test wrong
7M.

')lbt 6.6.5.3-6 shows that no check is performed for

ping on the par to disp .

Tests 6.6.5.3-7, 6.6.5.3-8, and 6.6.5.3-9 fail because
no checks (other than type compatibility) are done on
the pointer assignments tested. A check is done, how-
ever, that a pointer points to the area allocated to it by
new.

Tests 6.6.6.3-2, 6.6.6.3-3, 6.7.2.2-6, and 6.7.2.2-7
fail because overflows are not detected. The values
eventually go negative due to the overflow.

Tests 6.8.3.9-5, 6.8.3.9-6, and 6.8.¢.9-17 show that

Validation Suite Reports

a FOR control variable is not invalid after execution of
the FOR loop.

Implementation Defined

Number of tests run: 15

Number of tests incorrectly handled: 0

Details of imph tion-depend
7 shows maxint to be 34359738367.

‘Tests 6.4.3.4-2 and 6.4.3.4-4 show that all set bounds
must be positive. A set of char is permitted. Set bounds
allowed are 0 to 143. .

Test 6.6.6.1-1 shows that no standard functions
may be used as parameters. » . w

Tost 6.6.6.2-11 details some m r teris-
tics regarding number formats (e.g., single precision
reals in range 1.47E-39 to 1.70E+ 38).

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean
expressions are evaluated only to the extent needed to
determine the result.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that a variable is se-
fected before the expression is evaluated in an assign-
ment siatement. .

Tests 6.9.4-5 and 6.9.4-11 show that the default size
for the exponent field on output is 2, and the real, in-
teger, and boolcan default field widths are all 12.

Test 6.10-2 shows a rewrite on the standard file
“‘output’’ is not allowed.

Tests 6.11-1, 6.11-2, and 6.11-3 show that alterna-
tive comment delimiters have been implemented, as
have the alternative pointer symbol (‘‘@'’). No other
symbols from these tests are accepted.

Test 6.4.2.2-

Quality Measurement

Number of tests run: 23

Number of tests incorrectly handled: 0 .

Results of tests: Test 5.2.2-1 shows that identifiers
are not distinguished over their whole length; only the
first 12 characters are used.

Test 6.1.3-3 shows the number of significant char-
acters in an identifier is 12. .

Test 6.1.8-4 shows that no warning is given if a valid

‘statement or a semicolon is detected in a comment.

Tests 6.2.1-8, 6.2.1-9, and 6.5.1-2 indicate that large
lists of declarations may be made in each block. .

Test 6.4.3.2-4 shows an array with an integer index
type is not permitted.

Test 6.4.3.3-9 shows that variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 350 ms.
to run (on 1100/60).

Test 6.6.1-7 shows that procedures cannot be nested
to a level greater than 9.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and

6.6.6.2-10 tested the sqrt, arctan, exp, sin/cos, and In
functions respectively. No significant errors were
reported.
Test 6.6.6.2-9 (sin/cos) produced an *‘out of range’’ run-
time error on the last test in the program. The argument
was outside the acceptable range allowed by the 1100
math library for the sine function. .

Test 6.7.2.2-4 shows that mod and div are consist-
ent for negative operands except that when i mod 2

57

(i<0) is 0, it is represented as a negative 0 on the 1100,
Thus the expression i-i div 2*2 fails to compare with i
mod 2 for the even cases of negative i. Mod returns re-
mainder of div. .

Test 6.8.3.5-2 shows that case constants do not
have to be of the same type as the case-index, if the
case-index is a subrange. But the constants must be
type compatible with the case-index.

Test 6.8.3.5-8 shows that a large CASE statement
(> 256 selections) is permissible.

Test 6.8.3.9-18 shows that the compiler ensures
that because the FOR control variable is available after
the FOR loop, the final value is the final value of the
loop (not 1 greater or less). Thus the range checks (al-
ways generated) in the CASE accept the CASE index
(value is **pink’").

Tests 6.8.3.9-20 and 6.8.3.10-7 indicate the FOR
and WITH statements may be nested to a depth greater

than 15.

Test 6.9.4-10 shows that file buffers are flushed at
the end of the program.

Test 6.9.4-14 shows that recursive /O is permitted,
using the same file.

Extensions

Number of tests run: 1

Details of test: Test 6.8.3.5-14 shows the compiler
does not accept OTHERWISE in the syntax given in
the test. However, it does accept OTHERWISE (and
ELSE) when used in the syntax of a CASE label. Fur-
ther, many other (non dard) extensi are pro-
vided to allow Pascal 1100 to be used for implementa-
tion purposes on the 1100. These include external
compilations, external variables, 1100 Exec 8 support,
and variable length strings. PUG

IBM 4341

—t

Computing Services Centre

st March 1982
Dear Sir,

Enclosed are reports on running the Sale Pascal
validation suite against the Pascal compilers on the
IBM 4341 (Pascal/ VSR 2.0) and the VAX 11/780 (VAX
11 Pascal V 1.2-82). The latter is a later release than the
one reported in Pascal News No. 19,

You may wish to publish these in Pascal News.

Yours sincerely,

C.R. Boswell
Director

Pascal processor identification.

Computer: IBM 4341,

Location: Victoria University of Wellington, New
Zealand.

Processor: PASCAL/VS R2.0

Test conditions.
Tester: R. H. Hefford (CSC programmer).

Date: January, 1982,
Validation Suite Version: 2.0

Notes:
1) The LANGLVI(STANDARD) option was used
with the compiler.

2) The compiler was running under the CMS op-
erating system.

Implementation defined

Number of tests run: 15
Test 6.4.2.2-7 — MAXINT = 2147483647,

Test 6.4.3.4-2 — Implementation allows a set of
char.

58

Test 6.4.3.4-4 — The ord of all set members must
be in the range 0. .255.

Test 6.6.6.1-1 — Standard functions are not per-
mitted as parameters.

Test 6.6.6.2-11 — Smallest positive rea! number
larger than zero is 5.39760535E-79, Largest real number
is 7.23706558E+ 75. Reals have a 7 bit exponent and a
14 digit base 16 mantissa.

Test 6.8.2.2-1 — In the situation array(exp2] :=
expl; expl is evaluated before exp2.

Test 6.8.2.2-2 — In the situation p~ := exp; the
expression is evaluated before the position of p~ is
evaluated.

Test 6.9.4-5 — Number of digits in exponents is 2.

Test 6.9.4-11 — Default field width for integers,
reals and booleans is 12, 20 and 10 respectively.

Test 6.10-2 — A rewrite is allowed on the file
output.

Test 6.11-1 — *(*’ and **)’ are allowed to delimit
comments.

Test 6.11-2 — Alternative symbols are not imple-
mented. ‘@’ is used instead of .

Quality tests

Number of tests run: 24

Number of tests failed: §

Test 5.2.2-1 Fuiled: Meaning of the program was
changed by the truncation of identifiers.

Test 6.1.3-3 Passed: Numbser of significant charac-
ters in identifiers is 16.

Test 6.1.8-4 Passed: The compiler will help in the
discovery of unclosed comments by issuing a warning
if it finds inside the comment the start of another
comment.

Test 6.4.3.2-4 Falled: The declaration ‘everything
= array [integer] of integer’ is not allowed because
there are too many elements.

Test 6.4.3.4-5 Passed: Execution time for the War-
shall algorithm was 0.2 seconds. According to the man-

Validation Suite Reports

sl i ost o

o

ual the space required would have been 5120 bits or 640
bytes.

Y Test 6.6.1-7 Failed: Procedures cannot be nested
more than 8 levels deep.

Conformance tests

Number of tests run: 138

Number of tests failed: 11 .

Test 6.1.8-2 Failed: A opening curly bracket in a
comment is not allowed.

Test 6.1.8-3 Failed: The closing comment delimiter
does not have to be of the same type as the opening one.

Test 6.2.2-1 Passed: The identifier name range ap-
peared to have some special ing to the pil
and the program did not compile till it was changed to
$CO]

p;‘eu 6.4.3.3-1 Failed: A record declaration of the
form d = record; end; was not accepted by the compiler.

Test 6.4.3.5-1 Passed: Error in the program var
ptrtoi : Vi; instead of type ptrtoi = “i; .

Test 6.4.3.5-2 Failed: Writing an empty line to a file
results in a blank followed by an end of line marker.

Test 6.6.3.4-2 Failed: A routine passed as a param-
eter must not be nested within another routine.

Test 6.6.5.2-3 Failed: Does not seem possible to
create an empty file under CMS. .

Test 6.7.2.2-5 Failed: The expression (maxint =
(maxint div 2)) * 2 was flagged as causing fixed point
overflow. .

Test 6.8.3.8-2 Failed: A while loop containing no
statements is not allowed.

Test 6.9.4-4 Failed: Conforms to the standard ex-
cept when the number will not fit in the field width
specified.

Examples: (_ represents a blank)

Format 0.0:6 OQutput __0.0 instead of __0.0

Format 1.0:6 Output _1.E+00 instead of __1.0
Format 123.456:7:3 Output 123.456 instead of _123.456

Test 6.9.4-7 Failed: Writing of booleans does not
conform to the standard. According to the standard the
output should have been left justified but the PASCAL/
VS output was right justified.

Test 6.9.6-1 Failed: Page procedure did not cavse
a page throw when writing to a terminal. It will work
when writing to a file if the file has the correct format.

Error handling.

Number of tests run: 46

Number of tests failed: 17

Test 6.2,1-7 Failed: The compiler does not check
for undefined variables.

Test 6.4.3.3-5 Failed: A change of variant occured
in a record (by assigning a value iated with the
variant to the tag field). This caused a previous field to

Validation Suite Reports

cease to exist. A reference to that field did not cause an
error.

Test 6.4.3.3-6 Falled: A reference to a field with the
undefined value did not cause an error. The undefinition
arose because a change of variant occured and tho_se
fields associated with the new variant come into exis-
tence with undefined values.

Test 6.4.3.3-7 Falled: A reference to an undefined
field did not cause an error. In this case the variant
changes occured implicitly as a result of assignment to
fields.

Test 6.4.3.3-8 Failed: As for 6.4.3.3-7 except no tag
field is used.

Test 6.4.3.3-12 Falled: Allowed assignment of an
undefined empty record. A contradiction in that the
program did not detect the error and printed pass.

Test 6.4.6-5 Failed: An expression with the value
10 was passed to a procedure when the parameter was
declared to be 0. .5. The error was not detected.

Test 6.6.5.2-2 Fuailed: Read past eof not detected.

Test 6.6.5.2-6 Failed: Changing the position of the
file variable while it was the actual parameter to a pro-
cedure did not cause an error.

Test 6.6.5.2-7 Falled: Changing the file pointer
while it is within a with statement does not cause an

T.
emm 6.6.5.3-5 Falled: A variable which was an ac-
tual variable parameter was refered to by the pointer
parameter of dispose without causing an error.

Test 6.6.5.3-6 Failed: A variable which was an ele-
meat of a record variable list of a with statement was
refered to by the pointer parameter of dispose without
causing an error.

Test 6.6.5.3-7 Falled: A variable created by thg us-
ing the variant form of new is used as an operand in an
expression. The error is not detected.)

Test 6.6.5.3-9 Falled: A variable created by using
the variant form of new is used as an actual parameter.
The error was not detected. .

Test €.7.2.2-6 Passed: The expression {maxint —
(maxint div 2)) * 2 could not be compiled. Other meth-
ods were used to get a fixed point overflow and the error
was detected.

Test 6.7.2.2-7 Passed: Same problem as for 6.7.2.2-

Test 6.8.3.9-5 Falled: The use of a control variable
of a for loop after that loop had completed was not
flagged as an error. .

Test 6.8.3.9-6 Failed: The use of a control variable
for a loop which had not been entered was not flagged
as an error.

Test 6.9.2-S Falled: Reading ‘ABC123.456' into 2
real variable did not cause an error message. The result
was zero. PUG

VAX 11-780

Pascal processor identification
Computer: VAX/11-780

Location: Victoria University of Wellington, New
Zealand.
Processor: VAX-11 PASCAL V1.2-82

Test conditions

Tester: R. H. Hefford (CSC programmer).
Date: February, 1982.
Validation suiite version: 2.0

Notes
1) The validation suite was compiled using the/CHECK
and /STANDARD options.

2) Changes from VAX 11 Pascal V1.0-1 (as re-
ported in Pascal News No., 19.):
a) Empty record is implemented.
b) Tag field redefinition allowed.
<) Run time checking of the appropriateness of
the value of variables. Range checks are done for
array subscripts, assignment statements, PRED,
SUCC, CHR, case selecters and set operations.
d) Default field width for a boolean is now 7
characters (was 16).

CONFORMANCE TESTS

Number of tests run: 138

Number of tests failed: 11

Test 6.1.3-1 — The compiler issues a warning if an
identifier exceeds 19 characters but the program will
still run.

Test 6.5.1-1 — Would not allow a file of files.

Tests 6.6.3.1-5, 6.6.3.4-2 — The tests could not be
run as this pascal does not allow a procedure passed as
a parameter to have a parameter list.

Test 6.6.5.2-3 — A RESET on a non existant file
caused the program to fail.

Test 6.6.6.2-3 — The EXP function failed the ac-
curacy test. It gave the value of EXP(9) as 8103.083984.
The test program expected a value between 8103.08392
and 8103.08393.

Test 6.8.3.5-4 — Case label ranges exceeding 1000
are not allowed.

Test 6.8.3.9-7 — A for loop with an upper limit of
maxint caused overflow to occur.

Test 6.9.4-3 Pagssed. — The test program had to be
modified as the compiler would not accept a packed
array of char as a parameter in a readln statement.

Test 6.9.4-4 — When writing real numbers the pro-
gram used expontential format when the number ov-
erflowed the field. The validation suite expected fixed
point format.

Test 6.9.4-7 Failed writing booleans. — The pro-
gram wrote ‘TRUEFALSE’ and the validation suite
expected ‘TRUE FALSE’.

Test 6.9.5-1 — Parameter to a read cannot be the
element of a packed structure.

60

DEVIANCE TESTS

Number of tests run: 95

Number of tests failed: 29

Test 6.1.2-1 NIL is not implemented as a reserved
word.

Test 6.1.5-6 "¢’ is equivalent to ‘E’ in real numbers.

Test 6.2.2-4 — Allowed a global symbol to be used
within a procedure with its global definition and then
allowed it to be redefined.

Test 6.3-6 — A constant was used in its own
declaration.

Test 6.4.1-2 — The compiler allowed the use of
types in their own declaration.

Test 6.4.1-3 — Again a type was used in its own
definition. In this case a global symbol was available
with the same identifier.

Test 6.4.5-2 thru 6.4.3-5, 6.4.5-13 — The compiler
checks the types of the formal and actual parameters.
The identifiers do not have to be the same.

Test 6.6.2-5 — Functions do not have to contain an
assignment to the function name identifier.

Tests 6.6.3.5-2, 6.6.3.6-2 thru 6.6.3.6-5 — These
tests could not be run as this pascal does not allow a
procedure p d as a par ter to have a par
list.

Test 6.8.2.4-2 -— Jumps between branches of an if
statement are allowed.

Test 6.8.2.4-3 — Jumps between branches of a case
statement are allowed.

Test 6.8.2.4-4 — Allowed a goto into a case
statement.

Tests 6.8.3.9-2, 6.8.3.9-3, 6.8.3.9-4 — Aliows as-
signment to the control variable in & for loop.

Test 6.8.3.9-9 — A non local variable at an inter-
mediate level can be used as a for statement control
variable.

Test 6.8.3.9-13 — A formal parameter can be used
as a for statement control variable.

Test6.8.3.9-14 — A global variable (at program
level) can be used as a for statement control variable.

Test 6.8.3.9-16 — A for statement control variable
value can be read during the execution of the for
statement.

Test 6.8.3.9-19 — Allowed a nested for loop using
the same control variable. In this test the inner for loop
is in a procedure called from within the outer for loop.

Test 6.9.4-9 — Allowed the use of a field width of
zero and minus one when writing integers.

Error Handling

Number of tests run: 46

Number of tests failed: 18

Tests 6.4.3.3-5 thru 6.4.3.3-8 — Reference to un-
defined or nonexistant variables was not detected as an
etror. The variables become undefined or nonexistant
due to a change of variant.

Test 6.6.2-6 — Use of a fi
value was not detected.

Test 6.6.5.2-1 — The test could not be carried out

with an undefined

Validation Suite Reports

Y

-

i

o

o b i

e B P i

because the program would not do a PUT to a file it had
just done a RESET on. =

Test 6.6.5.2-6 — Changing the current file position
of a file f, while the buffer variable is an actual param-
eter to a procedure was not detected as an error.

Test 6.6.5.2-7 — This test is similar to 6.6.5.2-6,
except that the buffer variable is an element of the re-
cord variable list of a with statement. The error was not
detected.

Tests 6.6.5.3-3 thru 6.6.5.3-6 — DISPOSE ac-
cepted as parameter a NIL pointer, an undefined pointer,
a pointer that is pointing to a actual variable parameter
and a pointer that is pointing to a variable that is an
clement of a record variable list. No error message or
warning was given.

Test 6.6.5.3-7, 6.6.5.3-8, 6.6.5.3-9 - A variable
created by the use of the variant form of new is used as
an operand in an expression, as a variable in an assign-
ment statement and as an actual parameter. This was
not detected as an error.

Test 6.8.3.9-5 — Allowed use of a control variable
after the for loop had completed. The variable had re-
tained the final value it had in the for loop.

Test 6.8.3.9-6 — If a for loop is not entered the con-
trol variable retains the value it had before the for loop
is entered.

Test 6.8.3.9-17 — Two nested for statements can
use the same control variable.

IMPLEMENTATION DEFINED -
Number of tests run: 15
Test 6.4.2.2-7 — The implementation defined value
of maxint is 2147483647,
Test 6.4.3.4-2 — Implementation allows set of char.
Test 6.4.3.4-4 — Set element values must not ex-
ceed 255.
Test 6.6.6.2-11 L
1) The radix of the fioating-point representation is
2) The number of base 2 digits in the floating-point
significand is 24.
3) The arithmetic rounds.
4) The number of bits reserved for the represen-
tation of the exponent of a floating-point num-
ber is 8.
5) The exponent of the smallest positive fl. pt. no.
is — 128.
6) The exponent of the largest finite floating-point

Validation Suite Reports

number is 127,
7) The smallest positive floating-point number eps
such that 1.0+eps <> 1.0 is 5.96046448!5-08‘_
8) The smallest positive floating-point number is
2.93873588E-39. .
9) The largest finite floating-point number is
1.70141173E+ 38.

Test 6.7.2.3-2 — In the short circuit evaluation of
(a and b) both exp i are eval d .

Test 6.7.2.3-3 — In the short circuit evaluation of
(a or b) both expressions evaluated.

Test 6.8.2.2-1 — The binding order of (a[i] := exp)
is selection then evaluation.

Test 6.8.2.2-2 — The binding order of (p~:= exp)
is selection then evaluation. . .

Test 6.9.4-5 — The number of digits written in an
exponent is 2.

Test 6.9.411 — Implementation defined default
field width values:

INTEGERS: 10 characters
BOOLEAN: 7 characters
REAL: 16 characters

Test 6.10-2 — A rewrite can be performed on the

file output. .

Test 6.11-1 — Alternate comment delimiters have
been implemented.

Test 6.11-2, 6.11-3 — Alternative symbols not
implemented. .

Test 6.6.6.1-1 — Test could not be done as this pas-
cal will not accept a function or procedure with a pa-
rameter list as a parameter to a function or procedure.

QUALITY

Number of tests run: 23

Number of tests falled: 2

Test 6.1.8-4 — The program contained an unclosed
comment bracket. The compiler did not assist in any
way with finding this error. The program compiled
without errors. .

Test 6.4.3.2-4 — Declaration ‘array{integer] of in-
teger' is not allowed. The error message was ‘Index
type must not be integer’.

Test 6.4.3.3-9 — The fields of a record are stored
in memory in the order that they are declared.

Test 6.4.3.4-5 — Warshall's algorithm in Pascal.
Execution time was 102 milliseconds. PUG

81

e — e
b
3
;
Back Issues 1983
Pascal News 4
2903 Huntington Road
Cleveland, Onia 44120 _ JOINING PASCAL USER GROUP?
& Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor,
Back issues are requested and sent in sets) or just plain fan. :
¢ Please enclose the proper prepayment (check payable to “Pascal User's Group”).
m OUT OF PRINT ® When you join PUG any time within a year: January 1 to December 31, you will receive a/f issues Pascal
$15[Jset1lIssues 9. .. 12 (September 1977 News for that year.
T P ’ — June 1976) ® We produce Pascal News as a means toward the end of promoting Pascal and communicating news of
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourseives
$15 [J set 2 Issues 13 . . . 16 (December 1978 — October 1979) and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work
$15(] set 3 Issues 17 . . . 20 (March 1980 — December 1980) to do.
$15set 4 Issues 21 . .. 23 (April 1981 {mailed January 1982 — & ~—~ T~ -~ S - TS o T T oS T T T oo T T oo oo T oo T
September 1981 [mailed March 1982]) RENEWING?
R o Please renew early (before November) and please write us a line or two to teil us what you are doing with
oquests from outside USA please add $5 per set. Pascal, and tell us what you think of PUG and Pascal News.
All memberships entered in 1983 will receive issue 24 and all other issues published in that year. ORDERING BACK ISSUES OR EXTRA ISSUES?
Make check payable to: “Pascal Users Group,” drawn on USA bank in US dollars. ¢ Back issues will have a price rise to $25 on July 83
e Qur unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year
Enclosed please find US $ means that we eliminate many requests for backissues ahead of time, and we don’t have to reprint important
on check number - § information in every issue — especially about Pascal implementations!
—_— 3
b e issues 1 .. 8 (January, 1974 — May 1977) are out of print.
F e issues9..12,13..16,& 17 .. 20, 21 .. 23 are available from PUG(USA) all for $15.00 a set.
(1 have difficulty reading addresses. Please forgive me and type or print clearly) v ® Extra single copies of new issues (current academic year) are: $10 each — PUG(USA).
: 3
My address is: 3
NAME z SENDING MATERIAL FOR PUBLICATION?
3 * Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con-
ADDRESS + ference announcements, reports, implementation information, applications, etc. are weicome. Piease send
‘f’ material single-spaced and in camera-ready (use a dark ribbon and fines 15.5 cm. wide) form.
[T o All letters will be printed unless they contain a request to the contrary.
§
PHONE)
COMPUTER
DATE
i
62

VR e

e

IMPLEMENTATION NOTES ONE PURPOSE COUPON

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (" GAe o persen, adiiress and phene number. °)

2. MACHINE/SYSTEM CONFIGURATION Any known tmits on the configuration er i

opereting system. °)

DISTRIBUTION [Who to ssk. how i comes, in what optiens, and st what price. *)

DOCUMENTATION * What /s aveilable and where. *),

MAINTENANCE (ks intained, fuilly maintained, stc? *

6. STANDARD (* New does X messure up te stenderd Peseal? Is it & subset? Extended? New.*}

7. MEASURBMENTS (* 07 s speed or space. *)

RELIABILITY (* Asy information sbout fieid use or shes instelivd. *)

9. DEVELOPMENT METHOD /* How wes it developed and whet was It written in? *)

10. LIBRARY SUBPORT [Any other suppore for complier in the form of nkeges 10 sther i source Mivasise, o0e. %)

Membership 1983

Pascal News
2903 Huntington Road
Cleveland, Ohio 44120

Please enter my
[New or 7 Renew

membership in Pascal Users Group. | understand ! will receive “Pascal News" whenever it is published in this
calendar year.

Pascal News should be mailed

1yr. [Jin USA $20 [outside USA $30 [0 AirMail anywhere $55
3yr. [] in USA $40 [] outside USA $70 [AirMail anywhere $115
(Make checks payable to: “Pascal Users Group,” drawn on USA bank in US doHiars)

Enciosed please findUS$ ___ . ____
on check number

(invoice will be sent on receipt of purchase orders. Payment must be received before newsietter will be sent.
Purchase orders will be billed $10 for additional work.)

{1 have difficuity reading addresses. Please forgive me and type or print clearly.)

My address is:

NAME

ADDRESS

PHONE

COMPUTER

DATE

[This is an address correction here is my old address label:

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose) programming language possessing
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.

Pascal has met these goals and is being used successtully for:

® teaching programming concepts

* developing reliable “production” software

o implementing software efficiently on today’s machines
® writing portabie software

Pascal implementations exist for more than 106 different computer systems, and this number increases every
month. The “implementation Notes" section of Pascal News describes how to obtain them.

The standard reference ISO 7185 tutorial manual for Pascal is:
Pascal — User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $7.90.
Introductory textbooks about Pascal are described in the “Here and There" section of Pascal News.

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal
(1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We curmrently have d\ore than 3500 active
members in more than 41 countries.

et PN

TFIRIS

(FOLD HERE)

PLACE
POSTAGE
HERE

Bob Dietrich

MS. 92-134

Tektronix, Inc.

P.0. Box 500
Beaverton, Oregon 97077
US.A.

(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors should send us their checklists
for their products so the thousands of committed
Pascaiers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

'LEMENTATION NOTES ONE PURPOSE COUPON

POLICY: PASCAL USERS GROUP (15-Sep-80)
PR & ',; N
Purpose: The Pascal User's Group (PUB)’ the use of the progru-ing B
language Pascal as well as #9p: behind Pascal through the i

vehicle of Pascal News. PUGi#

political, and as such, it is'r

issues or support causes or @

» Informality is our guiding pr
wgm meetings of PUG.

The increassing availabilit
for software production ' sk
strive to make using Pascal;

Anyone can join PUG, * J telel'ut,
maintainer, implementory.sdi: o1 Just - pllin fan.
Memberships from librarie .. -See the
ALL-PURPOSE COUPON for deteils e

Facts sbout Pascal, .TH

Pascal is a small, practical, end .gene
programming language possessing algori
systematic programming. Pascal was intended to:
humans, and efficient to translates by computers

* developing reliable "produc
* implementing software eff.
* writing portable eoftware -

this number increases every month. T
- Pascal News describes how to obtain thes

The stendard re?erence and tutorial

Dy K . Sixglpe
Spri er-Verlag Publim 3
1978n?cortected printing peges p‘pn'b.ek

Introductory textbooks about Palcd
' uction of Pascal News.

"Tho progrming language, Paocil,
nligioua fanstic Blaise Pascal (16;

W“Wncal User's Group is’
_have moge than 3500 active members:
News is averaging more than 100 ;

