PASCAL USER'S GROUP

USER’S P N
o T ASCAL EWSLETTER
NUMBER 8
COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS
MAY, 1977
TABLE oF CONTENTS
0 POLICY
* *
1 EDITOR'S CONTRIBUTION u
2 HERE AND THERE WITH PASCAL
* L]
2 News
3 Conferences
6 Books and Articles -
* 7 Applications
8 ARTICLES
* 8 "Development of a Pascal Compiler for the C.I.I. IRIS 50. *
U A Partial History." - H
: - 0livier Lecarme .
11 “A Further Defence of Formatted Input"
- B. A. E. Meekings
* 12 "Proposals for Pascal" » *
4 - George H. Richmond ’ #
*® 15 "A Proposal for Increased Security in the Use of Variant) -
Records" - William Barabash, Charles R. Hill, and
" Richard B. Kieburtz
* 16 "Update on UCSD Pascal Activities" - . . *
VA - Kenneth L. Bowles
* 18 “Some Comments on Pascal I/0"
- Chris Bishop
i 19 OPEN FORUM FOR MEMBERS
* 22 Special Topic: Standards
40 IMPLEMENTATION NOTES
* 40 Checklist =~ = -
- 40 General Information
40 Software Writing Tools
" 40 Portable Pascals
42 Feature Implementation Notes
44 Machine Dependent Implementations
* 64 Index

65 ALL PURPOSE COUPON

POLICY

PASCAL USER'S GRAUP POLICIES

Purposes -

Merbership -

are to promote the use of the programming language Pascal as well as the
ideas behind Pascal. Pascal is a practical, general purpose language
with a small and systematic structure being used for:

* teaching programning concepts

developing reliable "production" software
implementing software efficiently on today's mach1nes
writing portable software

* o *

is open to anyone: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan. Institutional memberships,
especially libraries, are encouraged. Membership is per academic year ending
June 30. Anyone joining for a particular year will receive all 4 quarterly
issues of Pascal Newsletter for that year. (In other words, back issues are
sent automatically.) First time members receive a receipt for membership;

renewers do not to save PUG postage.

Cost of membership per academic year is $4 and may be sent to:
Pascal User's Group/ %Andy Mickel/University Computer Center/227 Exp Engr/
University of Minnesota/Minneapolis, MN 55455 USA/ phone: (612) 376-7290

In the United Kingdom, send £2.50 to:
Pascal Users' Group/ %Judy Mullins/Mathematics Department/The University/
SOUTHAMPTON/S09 S5NH/United Kingdom/ (telephone 0703-559122 x2387)

PASCAL NEWSLETTER POLICIES

The Pascal Newsletften is the official but informal publication of the User's Group.

It is produced quarterly (usually September, November, February, and May).
A complete membership list is printed in the November issue. Single
back issues are available for $1 each. Out of print: #s 1,2,3,4 X

The contribution by PUG members of ideas, queries, articles, letters, and opinions for

the Newsfetten is important. Articles and notices concern: Pascal
philosophy, the use of Pascal as a teaching tool, uses of Pascal at different
computer installations, portable (applications) program exchange, how to
promote Pascal usage, and important events (meetings, publications, etc.).

Implementation information for the programming language Pascal on different computer

systems is provided in the Newslfetten out of the necessity to spread the use
of Pascal. This includes contacts for maintainers, documentors, and
distributors of a given implementation as well as where to send bug reports.
Both qualitative and quantitative descriptions for a given implementation are
publicized. Proposed extensions to Standard Pascal for users of a given
implementation are aired. Announcements are made of the availability of new
software writing tools for a Pascal environment.

“iscellaneous features include bibliographies, questionaires, and membership 1lists.

Editor's notes are in Pascal style comments (**).

AL THE NEWS THAT FITS, WE PRINT. PLEASE SEND WRITTEN MATERIAL TO THE

NEWSLETTER

SINGLE SPACED AND IN CAMERA-READY FORM, USE NARROW MARGINS;

(LINE WIDTH 18.5 CENTIMETERS). REMEMBER, ALL LETTERS TO US WILL BE
PRINTED UNLESS THEY CONTAIN A REQUEST TO THE CONTRARY.

- Andy Mickel, editor, John P. Strait, associate editor, April 26, 1977.

m UNIVERSITY OF MINNESOTA | university Computer Center
N
TWIN CITIES a“z&%ﬂw %wsaum

"oy © | (612) 376-7290

This {ssue with so many impartant topics is late. I think:
another of thanks for the early work he did on P r, o« With this, the -
fourth fssus I’ve done, I have to say that it {s a lot of work, Sara Graffunder
and Jim Miner,who edited the Here and There and ImpTementstion Notes sections respectively,
this {ssue would not have appeared. A i

*RENEW

We've lowered the cost of PUG membership by keeping the price the same (541977 < “1976“

This is the last (and first) renewal notice you'll get. Please renew, especially if you
think we are doing some good fn the world. If you are not reading your own copy of the
Newslatter, why not help us out: Jofn for yourself (we need more members to keep the price
the same). Just think of 1t as giving up eating out one night in the next year. And we
won't refuse add itional (no strings attached) contributions!

STANDAR
See the Dpen Forum section for a series of letters.

MICROPROCESSOR Pascal '

See t re and There News section under Charles Bacon, P.M. Lashley, Steve Legenhausen,
Andy Mickel, David A. Mundie, and see Implementation Notes under both "Comment: Microproc-
essors" and under individual specific manufacturers's names. And Ken Bowles's article.

Pascal N_ggglgtter 19,

neadiine Yor writien contributions s July 15. Changes in POLICY: #4 is now out of print.
Al written matewrial must now be single spaced and typed with narrow margins. We are
running out of room!

‘ ?o:ml!choml deserves
e

IHIS lssy% ‘182

infortunately we have had to cut material from this issue ("a}] the news that fits...").

icorge Richmond sent a 5 page bibliography which we couldn't find room for. It had only
IS new entries over his last one in #4, and is incomplete these days 1f you keep ug with
irascal Newsletter, We were also unable to print a Roster incrament as we did in #7.

! regret this because 1t is the roster which enables Pascalers to get together especially
if they are in the same area. This time the number of new members totals 345! It would
have taken 6 full pages to print in a new compressed formatl We just couldn't afford it.
de also had to reformat every contribution to save space, and omit extraneous material.

tut, we have no shortage of matertal: (unlike the disease which afflicted the FORTRAN
ulletin, the LISP Bulletin, the SNOBOL Bulletin, etc.).

We have had many suggestions reblrd'lnq the newsletter. We want to keep it informal and
interesting and prevent its degeneration into a slick, useless, "orofessional” Journal.

"UG_and Pascal Newsletter Mechariics
UG now Fat SAT mebers Tn 25 countries and 47 states! We need more membars to stay

tinancially solvent (we are currently in the black, barely} and we need them as well as
renewals early in the academic ‘y‘:;:jprefernbly before August 15). I now strongly disagree
with my earlier fdea (and Mike ty's letter in this issue) of becoming affilfated with
ACM (T1ke STAPL under SIGPLAN)..-Did you know that sccording to Garth Foster. (January 6,
1977) STAPL (SIGPLAN Technical committee on APL) oaly had 973 mémbers after wore than 5
years in existence? If we affiliated with ACM, the price would probably double, but we'd
be compensated with fancy lettarhead.on the statfonary. .70 R

EDITOR'S: CONTRIBUTION

PUG has a broad base with many non-academic members. We have kept the price low, o
publicized PUG 1n unconventional ways (unltke ACM) and fn the process have become known in
industry where the real changes can be made. We just Completed our fourth mass matling
{350) on March 28 to the holdouts from George Richmond's old mailing list from newsletters
1.4, :

I would 11ke to encourage 811 PUG members to use their imaginations in making Pascal and
PUG more visible. Write letters to the editor of popular trade journals such as
COMPUTERWORLD, DATAMATION, COMPUTING EUROPE, etc. Distributors of compilers should send

an A1l Purpose Coupon to each recipient of their implementations. Write to SIGCSE (Pascal's
strong point is Computer Science Education}. I can't do all of these things.

I've noticed some big discrepencies in PUG membership at several universities which have

a fair amount of Pascal users. It seems that some local people have not done all they can
to tell their users about PUG. Why is it for example that at the University of Minnesota
there are 48 PUG members, at Lehigh University 13, at Indiana University, the

University of Texas, and the Technical University of Berlin 7, and at the University of
I11inois, Georgia Tech, the University of Southwestern Louisiana, Cornell, and the Imperial
College London, etc. there are 6 PUG members while at the University of Colorado there is
only 3, the University of Washington only 2, and at the University of Manitoba, SUNY Buffalo,
and the University of Massachusetts only 1?7

BACK ISSUES

I'm sorry that we are slow, but we are not in the publishing business. As I stated in

#7 we have had terrific growing pains resulting from not realizing back in September how
popular PUG was going to be. We are temporarily out of print with #5 and this holds up
mailing 5,6,and 7 to new members as we cannot afford postage for separate mailings. As it
fs, it is very expensive to mail back issues. At PUG "central" here in Minnesota, we have
no secretaries. John and I (with help from people 1ike Sara and Jim) have opened all our
own mail, answered with personal notes all inquiries, handwritten most addresses on
envelopes, handled all the typing, mailing of back fssues, filing, accounting, the matling
label data base; and sent invoices and bills to persons who haven't paid. That's right,

‘- we never planned on some people not paying. Those who still owe PUG money are: Bengt

Norstrom, Lars Magnusson, Bernhard Nebel, Roland F. Blommer, Stanley B. Higgins, Karl J.
Astrom, Wayne Fung, John S. Sobolewski, T. Hardy, Ada Szer, and John Nolan.
This is as of today, and I wouldn't be surprised to see their money soon, and I don‘t in
any way want to imply that each does not eventually intend to pay!

SUMMARY

T want to thank all of those who have helped this year, especially Judy Mullins, David
Barron, Carroil Morgan and Tony Gerber (who have enabled Australasian re-mailing with
zero compensation) and Teruo Hikita for remailing #7 to Japanese members. Finally many
thanks are due to the University Computer Center here at the University of Minnesota,
particularly Peter Patton, our director, and Lawrence Liddfard our associate director
for systems for enabling PUG to thrive.

“~ April 26, 1977

8# ¥IL1ITISKIN 1VISYVd

LL6T “AVN

I 39v4d

HERE AND THERE WITH PASCAL

NEWS (ALPHABETICAL BY LAST NAME)

Cherles Bacun, 10717 Burbaik Dr., Putumac, MD 20854 (PUG member): "I um interested in a
Puscal rurniing un a RSX-11M system us well as on the KI~10....alsu un sny 8080 system.”

(*» 1/10/77 *)

Mark Becker, 300 Collingwoud Ave., Fauirfield, CT 06432 (PUG member): "I'd like tu lucate
u version Of PASCAL for the PDP 11 that dues nut use "ur require the Flosting Puint
Prucessur.'™ (* 1/31/77 *)

(* from the newsletter of the University Computer Center at the University of Southern

California, 1020 W. Jefferson Blvd., Lus Angeles, CA 90007: UCC has sdded several ICL
prucedures (for its 18M 370 system) su that users can invoke the University of Matiituba
version uf Pascal. The prucedures perfurm one-step monitur; compile; cumpile, load and
gu; cumpile, linkedit; coumpile, linkedit, and gqu; load and gu; linkedit wud qu; and
compile and punch an object deck. 1/1/77 *)

Gury Buus, 517 N. 7th St., Bismarck, ND 58501 (PUG member): "1 am interested in knowing
wbuut chess prougrusms written in Pascal.® /

y
Kevin W. Carlsun, 153} Simpsun St. Madison, W1 5}7l§f(PUG member): (* Wants to know if
there is & qroup of Pascal users in or near Madisoun. 2(9/77 *)

C. R. Curner, 514 5. 9th St., Myurhead, MN 56560 (PUG member): "I'm trying tu implement
Pascal on Che PDP-8 and on the PDP-11. Any suggestions?" (¥ 3/1/77 ¥)

trederick C. Cuwan, The Aeruspace Corporation, Mail station A2-2043, P, 0. Box 92997, tus
Angeles, CA 90009 (PUG member): "I am interested in the murds to make [reteane 2 of
PASCAL 6000-3.4] run on the 7600 under Scupe 2.2." (* 3/18/77 *)

Mottio Hmel juk, Ist. di tlettrotecnich ed tletrunich, Universitd di Trieste, Trieste,
ftaly (PUG member): "In Trieste University a CDC cumputer exists and a Pascal compiler is
implemented there.

We have alsu an HP=2100 mini-computer and we would like to run some prograns there
fur tesching und fur research. For these rewsuns we intend tu implement the Pascal
compiler v this machine.

An “ first wtep . . . wn intend to write a P-cude interpreter using o the
Puscul-written interpreter and translating it into H-P Algel. Therefore we would be ylad
to khow if sumeone else is wourking to implement Puscal o the same
mini-cumputer. . . . We thank you also for any information you will consider useful to

- give us fur vur work." (* 2/5/77 *)

Stanley B. Higgins, Dept. of Medicine, Vanderbilt University, Nashville, IN 37232 (PUG
member) : ", . . our group vperates a POP-11/40, PDP~11/34 and u
PDP-11/55 . . . suftware . . . by DtC . . . RT=11 and RSX-114 operating
systems. . . . We would be must interested in knuwing of [Paacal cumpilers].“
(% 2/23/77 *)

Rubert L. King, 1452 Sandra Dr., tndicott, NY 13760 (PUG member): “If possible, please
furward inf urmation un free or very inexpensive Pascal cumpilers for an IBK 370/178 under
VSI with 3330's and 9-track tapes." (* 2/1/77 *)

Juseph Lachman, Computer Center, University of Illinois at Chicaqu Circle, Box 4348,
Chicaqu, IL 60680 (PUG member): " . . . At present the UICC cumputer center haus o
Pascal compiler. Ay sdvice you could uffer us relative tu the availability, quality,
and costs uf PASCAL compilers that will run un IHM/370 ur DEC PDP-11 cumputers would be
greatly appreciated.” (* 4/5/77 *)

J. Larmouth, Director, Coumputing Laburatory, University of Salfurd, Salfurd M5 4WT,
tuglend (PUG member): " Having muved tu Salford from Cambridge, I have ceused wurk ob
Pascal. Unfortutiately there was nubudy svailsble st Cambridge tu cuntinue the work. su

thut our efforts towsrds & 370 implementution shuuld bLe considered abanduned.

“We did produce usnd distribute s interpreter system but Cambridge . . . dues 1ot
huve the mun~puwer tu cuntinue even this services.

"Sorry this is wll so negutive. My interest in Puscul remwins, althuugh yuu might
be interested tu knuw that I um perhups mure interested in tUCLID, ws would, I think, be
most members uf PUG if they knew more sbout it." (* 1/5/77. Fur information abuut
tuclid, consult B. W. Lampson, et. asl., "Repurt on the Progremming Language tuclid,"
SIGPLAN Nutices , 12:2 (Februury 1977); and G. J. Pupek, et. al., "Notes on the Design
of tUCLID," SIGPLAN Notices, 12:3 (March 1977), 11-19. %)

P. M, Lashley, Directur of Cumputing CSCS, POB 764, 114 5. Bullard St., Silver City,

N1 88061 : a' from s letter tu the editour of Byte, 2:2 (Februsry 1977), 77-78 *) "I write
primarily in respunse tu Mr. Skye's letter in yodr August issue. 1 can only cunclude
that he hud been with ISM tuu long, otherwise he would not attempt to debase the 8080
with FORTRAN or PL/l, FORTRAN is a virtual pterudactyl, flying sulely by inertia,
whereas PL/1 is much better, but tuo rembling in construction. If he indeed tukes up the
admirabie tusk uf writing @ high level cumpiler fur the 8080, he would be better advised
tu bsse his compiler un a fully structured langusge such as PASCAL." (* The l=tter ques
ute fur several paruqruphs. %)

Steve Legyenhuusen, 12 Barturd Street, Highland Park, N3 08904 (PUG member): "I think it
is ashsolutely impurtant that persuns prumoting Pascal resalize the danger of BASIC's
becoming the permanent and unly language on micruprocessors. 0One only has tu pick up any
issue uf the computer hubbyist magazines such ss Jr. Dobby Juurnal, Byte, Kilubuud,
Creative Cumputing, =tc., to find that each is filled with BASIC. Some effurt should be

put furth tu promote Pascal in this medium." (* 12/31/76 *)

Chris P. Lindsey, Cumputing Courdinator, Harvey Mudd Cullege, Clarement, CA 91711 (PUG
member): “Do yuu kiow of a well-ducumented, errur free version of PASCAL which runs oi a
DECuysten-10 with o KA processop? (¥ 1/77 *)

R, A. Lovestedt, 20427 St 192, Renton, WA 98055 (PUL member): “Any PASCAL work ot an

William Lyczko, Software Development, NCH Corpuratio/Terminul Systems, 950 Dunby Roud,
Ithaca, NY 14AHS50 (PUG memberj: "I am interested in any information you muy have on
implementation of PASCAL for microprocessurs.” (* 1/7/77 *)

Philip J. HMalcolm, furmer address Zeus-lerines Consultants ttd., Shrupshire House, 2-10

Capper Street, Londurg new sddress c/u Bank of Adelaide, 11 Leadenhall St., toundun FC3V

e, tugbaad (POG menber): "Zeau-llermes iu . . dnvest igating the possihitity of

ndopting o Paneal == or Modula == type languige for in-house development of minie and

micro-computer software acruss a broad range of target machines.

"ldeal would be a compiler:

writter in its own svurce language; and

executable un a microcomputer (with siy 32-64K bytes of RAM, diskettes); and

eusily transportable tu different target muchines; and

relying ot a very small run-time monitur/suppurt package.

"We would be delighted tu hear from thuse pussessing or working tuwards such a
system.™ (* 1/3/77 *)

Arddy Mickel, Univ. Computer Center, 227 txp. trgr., U, of Hinmesvta, MWinneapulis,
MN 55455 (PUGC member) repurts receiving an educstional questionnuive from Intel abuut
computer cuurses and micru-processvrs. The question, "What programming languages sre
used?" contained the check-uff uanswers fortran, Algul, PL/1, PL/M, Basic, and Pascal.
Nut included were Cubul, lisp, Snubol, etc. (* Andy's response tu the catch-all question
st the end was, "When are you going tu suppurt Pascal ur a Pascul-subset and give up o
Basic?" *)

David A. Mundie, I rench Department , 302 Cubell Hall, University of Virginia,
Charlottesville, VA 22903 (PUG member): "ls Zilog reslly muking a micruprucessor that
executes PASCAL cunstructs as its machine~level lanquage (Byte, v.2, no. 4, April 1977,
p. 140)7" (* 4/3/77 Will a PUG member pleusse write Zilug tu ssk, then send the answer to
the newsletter? *)

8# Y31 L3ITSMIN TVISY

AYH

/61

Z 39Vd

0'8ryan, Computer Center, Western Michigan University, Kulwmuzuu, Michigan 49001:

L I'm it churge of PASCAL implementution and muintenunce ut WHU, We have an old

NAGtL's compiler fur the PDP=13 and will be releusing it fur use here in
1711 keap you infurmed un user reuctiun when it happerw.

Mark
'I.

ver;iun uf
eurly March .

Gene H. Olson, 421 County Rued 3, Apt. 512, Hupkine, MN 55343 (PUG member): "The best
srgument aquinst formatted resds hus yet tu uppeur in the PUG newsletter. In processing
lurge smounsts of furmutted duts (the suppused rstivnule of furmatted resds) keypunch ur
similer errurs cause buth furmetting and content errurs which render furmatted reuds
uselews. In other wurde, in 8 production envirutment,

churucter~f ur—charucter sw it is coming in." {* 2/25/77 *)

Jerry L. Buy, 21320 Oldgate-Rd., tlkhuets, M 68022 (PUG member): "I um sttempting to well
the idew of using PASCAL inwteud uf FORTRAN wu u firet languege 4w Cumputers & Businews .
suppurt my srgumert {institutions using PASCAL, stc., s well

courss, - Any infurmstion th

us the structure sspect id be greutly uppreciuted.” (* O/S/TJ’) s
R. Waldu ‘Roth, Cumputer S&imice Dept., Taylor Universify, Uplend, IN :
LNRERAE ¢ Would wlso 1ike &b know ﬂbuui the wvuilebilityzuf « PASCAL jpuckage tu rui uni OLC
11 syutemu under RSTS op RT~11." (% 2.24<77 *) : :

Carl W. Schwurcz, Digitul Equipment Corp., MR 1-2/t27, 200 Ffurest Street, Marlburu,

MA 0175 PUG member): ". . . While empluyed by Contrul Dutu I wus respunsible for the
deuign snd implementstion of twu cumpilers fur uw Punculebused prugremming lenguage (*the
Suftware Writers' Lunguage') fur the Cyber 170 and Cyber 270." (* 1/25/71 *)

Arthur . Schwarz, Hughes Airtruft Cu., Bldg. 150/MS A222, Culver City, CA 90230 (PUG
member): “Our instullation is currently interested in guining sume expertise in using
PASCAL. We wuuld like to Ubtsin a compiler fur use om our Sigmu 9 computer, ur lucking
this, 8 cumpiler with ucceswibls cude generuturs for -sither the COC our IBM computer
linew." (* 2/8/77 *))

Wayne Seipel, Box 8259 U.T. Stutiuu, Austin, TX 78712 (PUG member): “The University of
Texun Eunputer Science depurtment needs a PASCAL cumpiler for @ {Duty General) Nuve 30.
The depurtment hus just purchused 2 prucessors, ssch with 32K wurds of memury wid &
10Mege~byte disk. These will be used by buth greduate snd undergruduate students in &
hatide-un envirvnment. Current plans call for the develupment of an ovperuting system, und
a PASCAL cumpiler would muke 1life wurders uf magnitude ewsier. Any infurmstion v s
compiler {cumpleted, wtundurd, PASCALL, ur PASCAL2) will be grewtly uppreciuted.

Cuntact either Jumes Petersun, Cumputer Science Dept., University uf Texus,
TX 78712, wur myself.” (* 3/18/77 *)

Austin,

Kevin Weilex, 147 Curnell Qrtrw., Ithuce, NY 14850 (PUG member): "Huw wnyune implemented
PASCALY o w POP 11/457 (Is @ Junus interpreter wvuileble?)* (* 1/21/77 +)

mm..';xmg. 576 Leu Street; Willuide,'Nd 07205 (PG mewber)s “Here st NOIT, Pecal

is beginning tu be used in's juiureevel coursy in siguritime wid dutu-structures; there

tu wlso Andividuul intersst d::Puse:
5 ¥The. " mtudent brench:tuf ‘the ALY is

thiv subter. We ure intatested ™

activitios. . . ." (* 2/4/77)"

sl wmong faculty: sembere ¥nd the student body.
ACH. Le attempt i

iy~ reluted’ publicativie end

(*From w prews relesws bx’tm Us 5. Dapurtment sf:‘ﬁctﬂgio distributed by the British

Computer Sucisty, Muroh 22, 1877, un "The U, §. Depuetierit uf Deferwe High Order Lwe
guuge Effurk,” lo rench s cotwensus on ¥ cummon high ordsr lenguege fur embadded wystoms,
p. 8 *) s

"Without exception, the folluwing lenguuges '

FORTRAN, COBOL, - TACPOL , . (M5w2

 “prypussuls . shuul
offorts using sny of
thet. wetisfiep the Ovl.

HERE ~AND

dehuction of o langusge
cumeutsr ‘spplicstivne,

the progrem must check detu

1N 46989 (PUG MombRr): .

oonct sy v mediom uf informetion in

"WITH PASCAL

CONFERENCES

International Federation of Information Processing Societies (IFIP), August 8-12, }977 in
Toronto. (* Would a PUG member who is there organize and publicize a Pascal User's Group
gathering. We would, but we won't be there. Also, send in a resume of the meeting for

Newsletter No. 9. Thanks. *)
ACM '77, Seattle, Washington, October 17-19, 1977.

i REPORT on the Third Annual Computer Studies Symposium at Southampton (March 24-25)
"PASCAL - THE LANGUAGE AND ITS IMPLEMENTATION" . .

A little over halfway in this whirlwind, 48 hour happening, the medieval
banquet began. David Barron {the baron) and Judy Mullins (the baroness) enjoyed
}h: hgnor of reigning over and hosting the attendees; it was a delightful time

ndeed. e i

And so was the whole symposfum! I must command Jud{ for organizing the
svmposium down to the last detail and thank David for making 1t a reality.

a success by several different measures. Around 134 persons attended. The
proceedings officially listed {including speakers and last minute replacements):

Austria 3;.Belgium 4; Canada 1; Denmark 7; France 4; Germany 16; Great Britain 72;
The proceedings

Ireland 8; Netherlands 2; Sweden 9; Switzerland 5; and the USA 3;
contain the texts of all 11 presentations and will be published later this year
(see Books section). A1l except Per Brinch Hansen's which will appear 1n an IEEE
publication.

David Barron, U of Southampton, opened the symposium with a talk entitled

“Perspectives on Pascal® which looked at the past, present and future and concluded

'(I;ESAEP?P to join a “Society to Combat Well-meant Attempts to Change Pasca)

Urs Ammann, ETH, Zurich, was {ntroduced as the great-grandfather of all Pascal

compiler writers and summarized his work over the last 6 years in “The Zurich
Implementation.”

Jim Welsh, Queen's U, Belfast, 1ikewise introduced as the grandfather of
Pascal compiler writers detailed development and performance of “Two ICL 1900
Pascal Compilers."

David Watt, U of Glasgow, presented an extensive description of “A Pascal
Diagnostics System" for the ICL 1900 implementation.

Mike Rees, U of Southampton, presented a description of the Pascal compiler
effort on the ICL 2970 underway for the past 9 months in "Pascal on an Advanced
Architecture."”

Judy Mullins, U of Southampton, did not dream up hypothetical architecture,
but rather critically combined existing architectural features in designing “A
Pascal Machine?" : S

The next daﬁ began with Per Brinch Hansen, U of S, California descridbing
his "Exparience N{

and sketched an overview of “Pascal and Portability” issues. - ‘ :

Brian Wichmann,National Physical Laboratory, Middlesex, coalesced various
aspects on "The Efficiency of Pascal” tn comparison to other languages and in
different environments.

Grasme Webater, Teaside Polytechnic, advised others who introduce Pascal
into the curriculum with a talk on "Pascal in Education.”

There were two discussion sessions, Brian Wichmann led the first on “Pascal
on Minis and Micros” and I introduced the second on “The Future of Pascal®
concerning standards and extensions issues. o
: In between time,:the opportunity to talk and argue with other Pascalers from
so many places was 2 real treat for all, I'm sure, 1 managed to meet 48 people,

- and in the process confessed to Urs that 1t s hard to get used to intense, s
. exposure to so many cultural backgrounds. . - RS CorE

Perhaps ‘the long range accomplishment of the symposium was to pass on a

consensus to the rast of us i{n PUG regarding standards. See OPEN FORUM.

~ Andy Mickel, April 17, 1977

LU

(* The same here for Newsletter No. 10.%)

g# YIL1ITSHIN TVISVd

It was

th Modular Concurrent Programming® and his opinions of the future.
Pierrs Dasjardins, U of Montreal, substituted for Olivier Lecarme, U of Rice,

LL6T ‘AVM

£ 39vd

: R
O ke .
¥ ol i T
S S

ol University of Southampton, March 1977

‘!:hird Annual Computer Studies Symposium
PASCAL - the LANGUAGE and its IMPLEMENTATION”

SYMPOSIUM ATTENDEES, (127 pictured here; not all names and faces known together!): A full
1ist of names appears in the symposium proceedings.

8# d3ILLITSMIAN VISV

LL6T “Avuw

v 39vd

©
p g
wv
()
P ol
[e
=z
m
x
w
~
m
—
—
m
-
"
- 0

SYMPOS TUM SPEAKERS, ctured from left %o right): David Barron, Per Brinch Hansen, Andy
Mickel, Pierre Desjardins, Graeme Webster, NDavid Watt, Mike Rees, Urs
Ammann, Brian Wichmann, Jim Welsh, and Judy Mullins.

BOOKS AND ARTICLES

(* 0. W. Barrun, working with Rich Steveus, has uffered tu tuke uver this section. What
folluws is a rotice of the pulicy fur the sectimi, beginning with No, 9 *)

POLICY

In this section we shall try tu keep PUG members up-tu-dute with the PASCAL
litersture under the generul hewdings Languages, Textbuvks, Ilmplementation, Applicatiovns.
At the leust we shall give s brief citation of title, authur and publisber. If pussible
we shull included a brief abstract and, if the impurtance warrants it, s critical review.
Inn wddition from time to time we shall give (hupefully) cuaplete sinotsted biblivgraphies
uf welacted wureus: with the feeadbuck froum PUG members we should be sble tu build up o
really comprehensive guide tu the PASCAL litersture.

Buuvks and pupers in the established journsle sre fairly essy tu keep truck of, but
internul repurts present much mure difficulty. If you (ur yuur institution) produce o
repurt thut jou sre willing to circulsts, plesse send me w cupy of the title puge, or
better still u cupy uf the repurt. The uddress iu:

Duvid Bsrron or W, Richard Steveus

Puscul User's Group (U.K.) Kitt Peuk Nutionul Nbsecvatory
Depurtment of Muthematics P. 0. Box 26732

The University Tuscuts, Al 15726

SOUTHAMPTON, S09 SNH U.S.A.

UK.

Ay with the rpest of PUG, the succesn of this enterprise will rest largely on the
etthus Lasm wod help of the membership,

10 february 1977 David Barron

(* The policy begins with the next issue. What follows is our new information about books

and articles, and a review. *)
BOUKS

A Cuncurrent Pascal Cumpiler fur MHivdcumputers, by AL Hurtman, to be published by
Springer~Verluqg as Volume 50 in their Lecture Notes in Cumputer Science. Probubly
available by the end of April 1977. (* Al writes that the buok will ve of especial
interest to ", . . @y uf your membership using the Concurrent Pascal ur Sequential

Puscal cumpilers developed at Cultech for the PHP-11/45 minicumputer.” *)

Californius, San Diequ), to be
(* The bouk is cumputer graphics
Note the change of title frum our

Introduction to Cumputer Science, hy Ken Buwles (U. of
published by Springer-Verlsn i Octuber 1977.
vriented wnd uses Pascal as the teaching vehicle.
citstion in Nu. 5. %)

Introductios, tu Progremming si.d Prublem Solving with PASCAL, by G.M. Schaeider,
D. Per Imany, and S. Weingart, tu be published in hardbsck by Wiley und Sunw in Junuary
1978. A cemeru-reudy manuscript of the buok car be vbtaired by writing

Gens Deverpurt, tditour

Johte Wiley und Sone Publishers

605 Third Avenue

New Yurk, NY 10014
The muswscript may, with written permission, be duplicated fur class use witil the
public stiun uf the buuk.

Pascal-~the Llunguage and itu Implementation, proceedings uf the Sympusium it Soubhamptor,
March 24<25. (* At presn-tima, there is as yet o definite publisher und publication

date, Perhups detuils will be settled in time for publication in Nu. 9 *)

Structured Programning snd Problem Solving with PASCAL, by Richard Kieburtz, Dspui twent of
Cumput er Science, SUNY at Stouny Brouk, Stuny Brook, NY 11794, tu be published by
Prentice~Hsll sumetime in 1977, (* This is runured; we aren’t sure of the title,
etc, We hupe we'll have the facts in time for No. 9. *)

ARTICLES

“tfficient Implementation snd Optimizution of Run~time Checking in Puwcul,” by Churles N.
tischer and Richard J, LeBlanc, SIGPLAN Nutices, 12:3 (March 1977); 19-24.
(* from the abstruct *): "Cumplete rur~time checking of progrums is un essential tuul
fur the develupment of reliuble suftware. A rumber uf features of the prugrumming
language PASCAL (urruys, subranges, puinters, recurd variants (discriminsted type
unions), fourmal procedures, etc.) can require some checking ut run-time as well as
during compilation. The prublem of efficiently implementing wsuch checking is
cunsidered. Langusge mudifications tu simplify such checking ure suggested. The
pusuibility of optimizing such checking is discussed."

"Procesdings of the All-Union Sympusium o Implementation Techniques fur New Programming
Languages, Nuvusibirsk 1975."
(* This publication cume tu us from David Burrut, who received it from PUG member S.
Pukruveky, Computing Centre, USSR Acudemy of Sciences, Nouvueibirsk 630090, USSR,
Must of the articies usre in Russlast, but the number of Libliugruphicaul references to
publicutions abouut Puscal lead us tu believe that the articles might be ouf dnterest
tu PUG members. Would sumevne whu reads Russian (essily) volunteer to resd and
abstract the relevant articles for Nu. 9?7 We'll send a cupy uf the journul to youu
if yuu write tu us in Mirweapulis. The wbstructs could gu to David Herron fur the
next tewsletter, *)

"Programmicng Languages: What to Demsnd snd How to Assess Them," by Niklaus Wirth, Berichte
des liwstituty fur Infummetik, t. T. H. Zurich, No. 17 (March 1976), 1-24.
T* trom the abstruct *): "The softwere inflation hus led to s suftwsare crisis which
hus sbimulated w uearch fur better wethuds and tuoly, This includes the desig of
adequate system development languages.

This paper cuntaing sume hints ot huw such languuges should be designed and
prupuses sume criteris for judying them, It ulsu contains suggestions fur evaluating
their implamentutivng, snd emphusizes thut s clesr distinctiun must be mude between
lunguage and its inplementution, The paper ends with cuncrete figures abuut s Pascal

implementution thut may be used sy yurdstick for ubjective evuluations.”

An txtract
Instituts fur Infourmatik, t. T. H.
Suftware Practice ad txperience *)
(* trum the wubstract *): "The fulluwing fuble is s qrutesque extrapulution of past
ardd current trends i the design uf computer hurdware and softwsre. It is intended
tu raise the uncumfortable questiun whether these trends signify resl prugress or not
and suggests thut there may exist sensible Limits of Gruwth fur sof twure tou.®

frum "Profeussor Cleverbytets Visit tu Heaven," by Niklaus Wirth, Berichte des
Zurich, 17 (March 1976), 25-31. (* Tu sppear in

"The Software Develupment System," by C. G. Davis and C. R. Vick, Ittt Transactiuns on
Software tngineering, 3:1 (Junwary, 1977), 69-84. (* A summary by PUG member Nick
Sulntweff, whu sent in the citwtion *): Implementution of PDL~2, an extensiun of
Puscal, tu, amung other things, include cuncurrent proucessing. Are wlso writing an
0S in PDL-2.

"Sume High~l evel Lunquuge Cotwtructs fur Dute of Type Relutions An Iuvestigation based on
Extangions by Puscal," by Juschim W, Schmidt, fericht Nr. 31, hwtitut fur
Infurmutik, tumburyg, Junuury 1977,

(* trom the ubstrect *): "bur the extensiu of high-level lungusges by dutu types of
mude relation, three language cunstructs wre prupused and discussed:

~ o repetition statement controlled by relations

- predicstes as a generalisation of buulesn expressions

- o tounstructor for relations using predicstes.
The language constructs ure develuped step by step sturting with a set of elementary
vperations on relations. They sre designed tu fit intu PASCAL without introducing
tuo many additionsl cuncepts." (* These extensions, which process relational duta
buwsey, ura boing experimentully implemented in Nugel's DEC-10 cumpiler at Hambury *)

8# 43LL3ITSHIN TVYISYd

‘AYW

LL61

9 39vd

BOOK REVIEW

INTRODUCTION TO PASCAL, C.A.G. Webster, Heyden and Son, 1976.
No. of pages: 129. Price: €5.58, $u.

For several vyears now there has been an increasing need for
an introductory text on programming which uses Pascal as the
vehicle, Unfortunately, Webster has not given us that book.
The following may indicate why,

In the preface the author claims coverage of an “essentially
full version of the lanquage, discussing where appropriate ...
the original report and its revision (sic)®". In fact the book
describes the original (1971) language and supplements this with
incomplete and inaccurate summaries of the 1972 revision, No
warning is given that the language has developed vigorously since
1972, This makes the book almost useless in conjunction with
coTpilers for the latest version of the. language, Standard Pas~
cal.

One might expect that a book on Pascal would pay 3ome heed to
modern ideas of programming methodology. Ingtead we find algo-
rithms introduced by machine-langquage programs end illustrated by
"spaghetti” flowcharts. The concept of atepwise relinement
{"top-down programming”) is not mentioned until three quarters of
the way through the book and then only in the context of pro-
cedure declarations. o substantial guidance is given in vitasl
areas such as program design, testing, debugging, correctness and
saintenance. It might almost be a book on BASIC!

These qlobal defects are compousded by a list of errors of
fact, omission and commission which leaves & blemish in almost
every page. The following are just a few of the more serious,

(a) variable parameters of procedures are (wrongly) said to
be passed by reference, in a section which manages to make
the (very simple) parameter~passing rules of Pascal seem
almost incomprehensible in their complexity.

(b) Several examples of bad practice in the use of real
arithmetic are hardly compensated by a suputiclal warning

he dﬁﬂned luuquaqe. -

(e) Thcn ‘are-many lexical, lynt etic and logicu errors in
the prograsking examples, some of them seemingly calculated
to cause tht maximum confulion t ‘the beginner. For exam=-

o Findlay
-iey ot cla:qaw

. e‘aq v teuowtu‘"‘

[nltluuunq nthblu’ :
} gonstants, ' The lnt-;, ;
-3 diie ibed, -but vlthout warns:

HPPLICATIONS

(* Repurts of wupplications coume tu the Newsletter frum PUG members, primarily. If you
know of applications which use PASCAL, pleuse wend uw the detuils. *)

Pruyress Repurt un PLY - Murch, 1977

PLT (Prugramming Lunguage fur Yesching) is u muchine indeperdsnt CAI/CMI {Cumputer
Aided lustructijon/Computer Munsged Instruction) system implemented entirely in
PASCAL-6000. PLY feutures u cuncise structured lessun crestion languuge implemented with
a fast single puss cumpiler, an efficient interactive interpreter, and full lessun und
student munituring facilities.

The PLT system will sutomaticully step individusl students through u weeries of
lessuns wnd tests. Repurts by student end/ur lesson~tests cen be generated using the
system's reporting fucilities.

PLT is in full production use ut Lehigh University wnd is being used to implement a
seriss of lessons un PASCAL progrumming.

PLT will be releused ws un unsuppurted pruduct ufter cumpletiuon of its syutem
internuls marwwl (sbuut April 30, 1977). Fur further infurmutiun plewss write tu

Richurd J. Cichelli Christmas~Suucon Haull 14
Computer Science Gruup Lehigh University
Depurtment uf Mathemutics Bethlehem, PA 18015

RUNOCHF text furmutter

A versiun uf RUNOFF (the well~knuwn text furmatter uvailuble v the DEC~10 wid uther
mychines) is wuveiluble in Puscul on the COC Cyber 175. tducational institutions mey get
it un u free exchuige busis provided yuu wend @ tape, expect 1w immediute respunse on
bug~fixes, and du not distribute it tu others. Ducumentution is slsu availuble, Write to
Bub fuster, Cumputing Services Office, Univerwity of Illinuis, Urbune, IL 61801,

STEP-~A System fur crows compilfation,

Prugrums are written in Puscul. The terget cude is mscro-generuted with Stsge 2
(using un intermediate code). Cumplete. Availuble for distribution., Michel Galinier
(* PUG member *), Université P. Subutier-Infurmetique, 118 Ruute de Nurbunme, 31077
Tuuluuse Cedex, Frunce. (* 1/5/77 *)

(* from u news brief in Electrunics, March 17, 1977, p. 140 *): “tlectru-Scientific
Industries, Inc., Portlund, Ore., is beginning tu uffer its uwn compiler fur uwe by uthers
un the (DEC POP-11}. At the end uf last yewur, Cumputer Autuvemstion Inc., Irvine, Celif.,
annhuunced u cumbined cumpiler~interpreter fur. its..uwn aini-cumputers., Buth . cumpsnies
puint out thet Pescal . . . is simpler tu use then sither Furktrun or Busic. ESI is wiming
st upplicutions in ‘sitometed test wid dutmemcquisition systems wid in it pwn Lover
trimmers. Cumputer Autuluw 1ikew it for mwnq gumpilers end trensletors:®.

(* T.b. Bell, D.C. axxxur. und M.E, Dyer,” ('An Extenduble “Apprusch tu Culpiiter-Aided:

Suftware R.T&ruq‘;; kngineering,” in i 51 u, Infutech Stute ut tha Arts
Cunference, 18-20/76, pp. 3+27, slsu in T unh Suftwure tngis ng, 31l
(Junusry, 1977), 49-60) repurt thut TRW used Pescul =w %ﬁ Implomentution lenguage ﬁ its
cumputer~uided system fur msintsining end wnalyzing system suftware requirements.®): "The
simulutur generstur trunsfurms the [Abutruct Syutem Semuntic Mudel (* a dutwbuse *)]
representation of the requirements into simulstor code in the prugrsmming languege PASCAL.
The flow structure of each [Requirement Netwurk (R NET) (* the cluss of prucemsing flow
specifications #)) is used tu develop » PASCAM prucedure whuse cuntrul flow isplements
thet uf the R_NET structure.: Buch processing step (ALPHA) uf the R_NET becumes u call to

ere nxittm m PASCQL {* trom.p. 18 ')

A uumm“

txperimentul tngineering, Univerwity uf Minnesuts, Nimoupuuu, 55458, - ik

« procedure cunsisting of the mudel ur alguritha fof the ALPHA, The models ur slgurithes’

7 is uvaileble Irn. wﬂtc to Herb - Rubenmteds; Univcnit) Computer . Conter, 227

8# YILLITSHIN TVISY

LLGBT “AVM

ARTICLES

DEVELOPMENT OF A PASCAL COMPILER FOR THE C.I.1. IRIS 50.
A PARTIAL HISTORY.

Olivier LECARME
Undiversité de Nice

1. ENVIRONMENT

The history which is the subject of the present paper takes
place in the University of Nice, a medium-scale University with about
fifteen thousand students.
but delivers two different B.Sc. degrees in computer science (informatics),
and has full graduate programs. About two hundred students attend these

undergraduate and graduate courses.

The University computing center serves the whole academic
community with a C.I.I. Iris 50 computer, a medium-scale machine comparable

in power and capabilities with an I.B.M. 360 model 40 or 44, The multi-~
programming system Siris 3 allows the execution of several jobs in fixed
size partitions, the biggest possible size being 220 K bytes (stand-alone
mode), and the most current sizes being 64K or 96K bytes. The department of
computer science accesses this computer by remote batch processing, with

a mean return time of about one hour.

Programming languages available are an assembly language
(without macro definition capabilitied), Fortran and Cobol. None of these
languages may be considered an adequate support for teaching computer
science, and especially for teaching programming to future specialists.
Successive attempts to implement Pascal have consequently been done, with
variable success. The main difficulties encountered are the lack of
dedicated manpower, the weakness of software tools available, and the small

amount of storage normally avsilable on the computer.

2. FORMALISM FOR DESCRIBING TRANSLATORS

The so-called T-diagrams of Earley and Sturgis are very useful

to describe the generation of translators by complicated bootstraps.

The four following different symbols describe the different programs :

V f L SL oL
WL \L WL

The department of zomputer science is very small,

R

/
'

i
|

The first one is a hardware processor, i.e. a computer or machine M.
The second one is a software processor, i.e. a program realizing some
unspecified function‘f, and written in the programming language WL.
The last two are software processors realizing a specified function :
the first one is an interpreter for language IL, and the second one is

a translator from source language SL to object language OL.

By concatenation of different symbols, and provided that the
same language always appears on both sides of any concerned frontier,
we can Jescribe the generation of a compiler by another one. We use four
different arrows describing the translation processes : the solid arrow
indicates that the target program is the translation of a source program
by a programmed translator ; the dashed arrow indicates that the target
program is produced by hand, either from scratch (no source program), or
by modifying one of the languages concerned (this language is specified
along the arrow) ; the dotted arrow indicates that the target proérnm is
a copy of another one, without modification ; the double-ended arrow
indicates that two programs must be identical for validating the bootstrap.
Using this formalism, we can describe the history of the two principal
Pagcal compilers for the CDC 6600 (the following diagrams abusively

simplify the history) :

Pas 6000 Pas 6000|-<.> First Pascal
~ . compiler
6000] Pas | Pas 6000 6000]
”Pas Pas 6000 | 6000 -
’ s j ! .. second
\ 5 Pas 69997._ Pas2 6000 Pasc?l
> l compiler
““U“ ->|Pas2 6000} Pas2 Pas2 6000 60?§
.o Pan 6000 Pas P5l2 6300 6000
OL 7~ " - Ly
. p 1 R ' Y
| Pas l Pas 6000 60001 \/
. . / N.B. These two diagrams
Fxrst'Palcll L ; could be concatenated
compiler

3. FIRST ATTEMPT WITH PASCAL-P

A translation into Fortran of the interpreter for P-code
(first version of Pascal-P) had been made in Paris for a CDC 3600, and
carefully written for being really portable. In fact, it was quickly
implemented on the Iris 50, but it gave so disastrous performances in
time and space that the compilation of a tiny program (by interpreting
the compiler) would have necessitated exclusive use of the computer for

about one hour. Explanations of this phenomenon are simple and inte-

resting.

8# ¥Y3L13ITSMIN TVISV

‘AYH

LL6T

2 39VYd

The packing and unpacking of P-code instructions fields
were done with multiplications and divisions by powers of 2. The
Fortran compiler did not recognize the special form of these operations,
and generated ordinary code, which was especially complicated for integer
arithmetic. This partly explains the aslowness of the interpretation,
other factors being the use of Fortran input-output routines, and the

heavy overlay loading necessary because of memory problems.

These memory problems are partly due to the weaknesses of
the first P~code, corrected in the last version : either the length of
each data object must be explicitly indicated in ite representation, or
each object must be allowed the same storage size, This second solution
had been chosen in Paris, because of better time performances, but it
necessitated two memory words (32 bits) for each type Boolean, character,
integer and real, because of the 58 bits necessary for sets when inter-
preting the compiler. The interpreter needs a "memory" of 24 K "words",
i.e. in our case 192K bytes, plus the interpreter itself, the interpreted

program and the Fortran execution support (principally input-output).

The following diagrams describe the two phases of the
generation and use of a Pascal implementation with Pascal-P.

' l CF
PR Pu_ P ' Pas 3 J o 111
Pas pl Pail’al\" “porop l 9-- Pas ploe
lru Pu\—ﬁooleoool T 4 P ; P '
‘A_— -
) v P 1 150
*. K 15
e Por ' For 150 150 \L5g
Pascal compiler A /
Pas ...~ for the CDC 6600 /orT e
s | (source and object) ' . ;. 150‘ \,'
R 1 NS
1 v
- . }
| written by

$370114V

Pas the menufacturer

¢

4., SECOND ATTEMPT WITH PASCAL-P

A completely new translation of the interpreter into Fortran
was dons, using the second version of Pascal-P, @ome asssmbly language
routines were used for plckin' and unpncktng lhldu, mipuhting hn;zh
muu:a, fox d‘n‘ ete -

: pifetion sod

. programs u l tolarable m. ht o’ m A neuhu trﬂn to have &
four put program compiled would have %Iuatcd 211 his available funds
for one moath | This taught to students an extrsordinary carefulness when

trying their programs, and in many cases they managed to get a complete
working program in only one run. This result is not so bad, but other
frustrations were not tolerable, and this tool could not have been used
for more than one year.

Moreover, the poor performances of this compiler made completely
impossible to use it as a tool for developing an actual compiler, generating
machine code : the compilation of the Pascal~P compiler would have necessi-

tated more than 8 continuous hours of exclusive usage of the computer. This

was, practically, absolutely impossible, especially within our local context.

The same diagrams in the preceding section describe this compiler.

5. A STUDENT JOB

During the same academic year, and using only his spare time,
an undergraduate student wrote, partly in Fortran and partly in assembly
language, an in-core load-and-go Pascal compiler. It happened, by
incredibly good fortune, that this compiler was sufficiently well written
to be usable by students. It is used during the present academic yéar. and
gives a compilation cost of about 1.4% of that of the Pascal-P second
compiler. It implements standard Pascal with only a few very minor
restrictions, but prescribes very small limits on the size of programs,
the number of identfiers, the complexity of all declarn;ionl, and so on.
All in all, it is only a teaching tool for small programs, and it is
completely impossible to make it usable for implementing a tull compiler.
However, it was a mean to wait for something better and more general,

without too much frustration.

| Pas 150 ,Pn 150 | - \ e
T R - R s
g For 'For’ 150 150 ' N alPas F- 150 'ISO l
. — | - . ' - iﬂo ’
» 130 | S 5| 150 .
. ‘i’{’(y 50
written by A

the menufacturer \/

6. DEVELOPMENT OF THE TOOLS FOR THE FUTURE BOOTSTRAP

The compiler of section 3, 4 and 5 are only toy compilers ;
they cannot compile themselves, and consequently they cannot be used for

developing th.nnclvau. Since we have no other computer available in the
vicinity, and’) adaqun softvare. todl. od. our computer, many possible
solutious had to’iu oliminated, upochﬂy’thon ‘which use a powerful
ucro-.cuntox_-. ‘No funds were available for repatitive travels betvess

Nice and other computing centar, and stiil less for computer time in
other centers.

8# ¥3IL1371SKH3IN VISV

LL6T ‘AVN

6 39Vd

The chosen solution is consequently very original, somewhat
complicated to describe, but needing unly « minimal amount of programming.
Moreover, this programming is not dome by us, but in another (wealthier)
University, Université Paul Sabatier in Toulouse, France. Several
processors are available in that later place : 1°) A Pascal compiler
running on a CII Iris 80 computer, bootstrapped from a CDC 6000 computer
7

compiler from Pascal to Iris 80 machine language, written in Pascal and boot-

by Didier THIBAULT, and described in Pascal Newsletter it is a

strapped into Iris 80 machine language, according to the cugtomary

diagram

»Pas 180 [Pas 180 |
Pas 180 | Pas [Pas “——_ "180 |80 '
. v
~ET I R
Pas | Pas 6000 [6000 : 'Pas 180 |)1{9" 180 l
St 1 o e B U
! sooof g {Pas™" 180 !
oL r Pas 180
' ool — ‘
—_— N/ | 180]
[Pas 6000) 7 :
Co 180
—_— Pas compiler

for the CDC 6000 v
(source and object)

Diagram for 1°).
WL . -7 PE w1 PE 1LY PE it |eeenn »Pass | of the tool
i . . e - compiler
~ — s — . A il " 150
> (ﬂ /ﬂ (£ A 'PE 1Ll fee IL1 ILY)ILI 150' 15
= s : I" N & U = ; ‘ - = 80| 180 - 180/
I PE ILl PE PPE "7 ILE ILI LT L2 i1L2 IL2 X X Pas Pas 80] e “T
: _ — L . ~ | \ 180 \ 180
! */ o e /
Pas |Pas 180 [180 x| s2 . -;lsz \ 'S ¥ '
! -7 .- - oL \ 180
180 180/ - 52 | $2 ‘ Y
‘sL \ % ! > . : 180 Pascal compiler
ToL \1so/+ ,/"" 180 ' 180 as < for the Iris 80
M . bootstrapped ' - (source and object)
| . 8 \{83/ ‘ a,‘ Pass 2 of the tool
i Pas ISOLr : \ e comp{ier
l !) Pascal compiler . . , - \»Y .))
P i i Diagram for 2°) and 3°). s ' - - — - : !
as | f‘i&.ﬁi‘i ;:;sogg)ect) g) IIU 150 il 150J lm 150 JILI 1s0 | . gL 150 !
__ — — LY R -
2°) A compiler from a subset of Pascal (called Pascal-E) to an intermediate lPas ‘Pas\\“ 180 1180‘ 1 PE ‘pE IL1 ‘ILI‘ILI 1501150
H —_— ——— . ¢ .
language ILl, written in Pascal. 3°) A translator from IL! to a second ;o ’ - . 1‘ ‘ \ ¢
: P . f 180
intermediate language IL2, written in Stage 2; Stage 2 is itself an inter- : beo f Y;fo

preter, implemented via a full bootstrap. IL1, 1L2 and the corresponding
compiler and translator were developed in Toulouse as a tool for cross-

compiling, on the Iris 80, Pascal programs fur severai mini-computers.

1.1 is a quadruplet language, as suggested by Gries and used between
two passes in many compilers ; 1L2 is a machine oriented language,
especially designed for being easily translated into machine code
for mini-computers, by a second translator written in Stage 2. The

diagram above is for 2°) and 3°).

7. DEVELOPMENT OF THE TOOL AND FINAL COMPILERS

We wanted to avoid the bootstrap of a complete compiler,
mede by changing the object language on an oxinting one, hecause of the
difficuities of debugging and tuning such a large program when using
two computere distant by 600 kilometers. By writing by hand, in Pascal~E,
a translator from ILl to Iris 50 machine code, we can obtain the tool
compiler we need, but in a two-pass form. This translator is very easy
to write since IL} is a quadruplet language. Some modifications are also
necessary for the compiler from Pascal-E to ILI, to write it in the
subset of Pancal it acceptu, but these modifications are in fact trivial,
since the only things to do are to replace, for example, writeln (code)
by writelnc , or write (output,c) by write (c). By doing six translations
on the Iris 80, according to the following diagram, we obtain a two-pass

Pascal~E compiler usable on the Iris 50 :

A

8# ¥ILLITSHIN TVISY

AYH

L1611

0T 39vd

The future and final compiler for the Iris 50 will be obtained
by filling holes in the "trunk compiler” of H,H. Ndgeli, as it was done with
success in Tokyo for the Hitac 8000 ; it will be implemented with the tool

compiler :

Pas 7 |€- - trunk
compiler
— oL Pas
3‘_'_. - _., Pas 150 | Pas
Pas 150 Pas 150 | Pas|Pas I50 (150
S m—
PE |PE IL? JILI jIL} 150 150
50
150 I50
i
. \Ks « T \IS
pass | pass 2

.- The two-pass tool compiler is intended ta be usable in next March.
It i-pi’éhn the minimal subset of Pascal needed for writing the compiler.
Omitted festures are reals, file declarations, most standard procadures or
functions. Standard files necessary for implementing the compiler are built~in,
an accessed via several pre-defined procedures. No other part of the language
is omitted and packed structures are implementad. The translator from IL}
to Iris 50 produces code for the linkage editor, one module per procedure.
This will permit segmentation and overlaying of the compiler, but without
any means for checking the validity of access to global variables.

_.The final compiler will implement exactly standard Pascal, and
produce’ pod_iulci for the linkage edftor, as the preceding one. The whole
process qhiulq be terminated at the end .of 1977, and several computing centers
are slready int ted in the final preduct, .,

*4%y Tnfgrested Tn the Tinsl preduct. . (Meceived 77/03/09.%)

A_FURTHER DEFENCE CF FORMATTED INPUT

B. A. E. MEEKINGS

Computer Studies Department
University of Lancaster

In PUGN # 7, Barron and Mullins attempt to demolish the case for formatted
input. Without wishing to blow up the controversy beyond reascnable pro-
portion. I would like to add a voice in favour of formatting.

1 feel that Barron and Mullins have rather missed the peint, inaswuch as
input dats is unfortunately not always under our contrcl; in eddition, of
course, it is unreasonable to exclude a feature from the language simply
because it can be done in another (more long-winded) way. I have

implemented formatted input in my Pascal P4 compiler forthe following, I

" think very good, ressonss

1. it 18 a simple modification 1c make, with relatively little overhead.

1i. it is entirely within the "spirit" of Fascal, naking input conslatent
with output, which it currently is not

iil. it allows for reading in character strings to complement the similar

output feature

ive I am working in genexal area of simulstion languages, and hence
ettempting to woo usefs away from the traditionally Fortran based . - '
languages - I see formatted input as one less obstacle for them to
overcome in the transition.

I an not in any sense an advocate of Fortran, but I do feel that the

association between fourmatted input and Fortran is rno valld reason for

its exclusion from other languages.

In short, the addition of formatted input, to supplement the existing

unformatted input facilities, can only enhance an already versatile

lerguege. (*Received 77/03/21.%)

(* Meekings is not a PUG member yet.*)

g# YILLITSKIN VISV

LL6T AWM

3

I1 39vd

PROPOSALS FOR PASCAL
George H. Richmond
University of Colorado
Computing Center

THE REPRESENTATION OF PASCAL FOR COMPUTER INPUT

The original lexical definition of Pascal was closely tied to tne CUC
character set. The current implementation allows for complete
representation of all Pascal elements in the ASCII character set except
the up arrow which is used for pointer and file references. In this
case, circumflex is the ASCII character that is used.

This lexical representation should have a 48 character alternative
for computer systems with restricted character sets. Some obvious
equivalences are period-period (..) for colon (:) (this is almost
always true for the CDC implementation), period-comma (.,) for semicolon
(:), and period-equal (.=) for replacement (:=). Additionally, two
letter alternatives for relational operators should be allowed.
Brackets for subscripts could be (. and .) or (/ and /). .

whether or not to always accept the 48 character representations |1s
an open question.

COMPILE OPTIONS

The Report (1) does not mention compiter 0pt@ons enc}osed in comment
symbols, but perhaps this means of defining compiler options should De
formalized. Several compile time options like lxstlng_gontrol, code
generation, and source line width should be universally detined.

INTERNAL, CHARACTER SET

pascal could be made the first language to standardize the ordering
of characters for the basic data type CHAR. This standard could be
ASCII. Thus the basic data type CHAR will have 128 elements. At the
moment, the CDC implementation 1is stuck with the anachronism of a
character set based on a 6-bit element. It would be reasonable for text
files to be mapped between the internal ASCII set and the external
operating system character set. The normal charaqter set gor a
particular machine could be accessed without translation by using a
packed file of the appropriate integer subrange type.
An alternative solution to the problem of antiquated character sets
- would be to provide several CHAR types. ASCII could pe avkeyword wh;ch
defines the 7-bit ASCI1 character set., FEBCDIC would define that Q—hlt
set. The local machine implementation of characters would be CHAR.
There should be character set conversions across assignment statements.

REMOVAL OF CURRENT RESTRICTIONS AND ASYMMETRIES

The restrictions and asymmetries outlined below are made with
reference to the CDC implementation of Pascal.)

First, and foremost, the designation PACKED should‘tell the compiler
to optimize storage usage instead of speed of access in Qata structures.
it should not have any other effect upon constructs in the language.
Unfortunately for the CDC implementation, this is not true. One cannot

compare or output unpacked arrays of characters, but this can be done
for packed arrays of characters. This particular asymmetry is
reminiscent of Fortran in its arbitrariness.

There is an implementation problem in passing elements of packed
structures as VAR parameters which will probably have to remalin.

A bothersome restriction is set size. Sets should be al}owed to have
any size, not just some convenient but fixed machine size. It is
difficult to justify the exclusion of the last 4 elements of the CDC
character set just because there were only 690 bits in the CDC word.

If a subrange declaraction of INTEGER exceeds the normal precision of
the usual representation, an automatic extension to multiple precision
arithmetic should occur. There should be some way to declare the
minimal precision required for the REAL type so that multiple precision
arithmetic could be wused if necessary. In this manner, a precision
sensitive algorithm could be run on different precision machines witn
good results,

FUNCTIONs should be able to return any type. Identifiers should be
unique to their entire length.

THE PROGRAM DECLARATION

Aside from specifying the name of the main program, the program
declaration contains a 1list of file names. The current usage of the
declaration in the CDC implementation is to allow immediate opening of
all files upon entry into the main program and to establisn the ordering
of files for the positional substitution of system file names that is
possible in CDC operating systems. The first action 1is unnecessary.
The second action should be clarified in the Report (1) or regarded as a
CDC implementation feature. Neither INPUT or OUTPUT should be mandatory
on the program declaration. All files must be opened explicitly before
test or data transfer. Otherwise, an error is diagnosed. Close
operations should also be available.

VARIANT RECORDS

The current definition of wvariant records is quite useful and has
been «cleverly utilized to subvert type checking within the cuc
implementation of the lanquage. This is unaesthetic even though it is
necessary. There ought to be a better way.

Unfortunately, the current definition of the language does not allow
the tag field of variant records to be automatically set when a variant
record is allocated or a variant field is stored and to be tested for
correct type when a field is fetched. This checking should be done to
protect the run-time system from the lazy or careless user. Perhaps
another formal compiler option should be defined to disable this type of
protective code. :

THE CASE STATEMENT

A decision in a case statement may be implemented by a jump table or
series of tests. The compiler should choose which technique to use
based on the type of expression involved. Perhaps a type identifier in
addition to the normal expression would nelp narrow tne range of values
and allow the faster jump table to be selected. 1In any case, an ELSE
exit Is highly deslrable. It is a waste of time to force the programmer
to protect each case statement with an if statement. Also, it would
then be possible to make case statement tests on strings, large
integers, or real numbers. Another extension would be to allow the
subrange notation for case labels so that ranges of values could be
directed to a statement,

BOOLEAN EXPRESSIONS

Boolean expressions should be computed only as far as necessary to
establish the wvalue of each subexpression. AND is FALSE when the left
operand is FALSE. Then the right operand could be ignored. Similarly,
OR is TRUE when the left operand is TRUE. The ultimate value of tne
entire expression would still be «correct by doing this partial
evaluation, and the expression of loop termination conditions when
indices go out of bounds will be much simpler,

CONSTANTS, DECLARATIONS, AND CONSTRUCTORS

The Pascal language needs a means of constructing structured
constants. In fact, Wirth (2] has defined <constructors for this

8# ¥31137SMIN VISV

AYW

LL6T

Z1 39Vd

purpose, It should be implemented.

In constant declaractions, it should be possible to perform compile
time computations using constants and previously defined constant
ident ifiers.

VALUE INITIALIZATION AND OWN VARIABLES

The current Pascal has a large core requirement because it does not
have value initialization and it is not overlaid. Vvalue initialization
of structured variables can be done using the constructors mentioned
above .

value initialization should be possible in procedures other than the
main program. These variables would be initialized on each procedure
entry. On most machines, this will reqguire run time code for
initialization instead of loader initialization.

Own variables (in the sense of Algol 6é#) should be allowed, and would
be initialized just once at load time. B

PROCEDURE AND FUNCTION TYPES FOR COMPILE TIME CHECKING

One omission in the definition of Pascal in the usual strict compile

time type checking is the uncheé¢ked correspondence between declaraction,

and usage of procedures and functions passed as parameters to other
procedures and functions. This omission opens the run time system to
mysterious collapse when procedures are incorrectly called. This
compile time check can be done in one pass compilation if procedure and
function type identifiers can be defined. The type would have the
attributes of = denoting a procedure :or function, the number of
parameters, and the type and VAR property of each parameter or result.
This would actually simplify thea syntax of a parameter list by
eliminating the need for the keywords FUNCTION and PROCEDURE, If the
parameter position is typed by & procedurs type identifier, then the
actual name of a procedure must be passed at call.

DYNAMIC ARRAY PARAMETERS

Although some limited means of passing variable sized arrays is
desper ately needed in Pascal, Jacobi’'s proposal {3] is too limited in
scope. A dynamic array parameter should be indicated in a parameter
list by the inclusion of the keyword DYNAMIC before the type identifier.
Any actual parameter which conforms to the type, except for array
bounds, would be accepted. This allows for arbitrary packed structures,
The prohibition against other than element
to the last : ixg] :

I BASIC TYPRE

A majér sdvant ! Pascal over other K g languages is
expressive power in data structures. Decause more information about the
data being operated on is available to the compiler, better code can be
generated to handle the manipulations. Por this reason, the basic types
of Pascal should be expanded. The COMPLEX data type is one that should
be added.

For similar reasons, the exponentiation operator should be added to
the language.

Ano ther extension I propose requires more justification because of
its impact on the implementation. STRING should be added as a basic
type along with operators, standard procedures, and functions for
concatenation, extraction, pattern matching, and type conversion, The
closest approach available now is a recdrd composed of an integer
character count and .an array of characters. This is an inadequate
alternative as the compiler cannot easily rfecognize this as a string and
the programmer is burdened with providing a plethora of auxiliary
routines. The resulting code is less efficient than what is possible if
the type STRING was defined.

wise access should only apply

Catatus testidy: and positioning operations. . L : g
The files of type TEXT are fundamentally different from the othée two

ts

Of course, well defined automatic coercions (in the sense of Algol
68) must be available between strings and arrays of characters.
Additional standard procedures and functions egquivalent to tne CDC
Fortran ENCODE and DECODE routines should be available. when possible,
the compiler should revert to the older pattern of fixed sized array of
characters instead of treating all character string constants as
STRINGs.

TRANSFER FUNCTIONS

Transfer functions between scalar types and their character string
names should be available. There should be a type check defeating
function which regards its source and destination as bit fields of some
appropriate width. This function would eliminate the need for the
variant record subversion. Inverse functions for ORD across all basic
types might be considered to be the type check defeating mechanism.

EXTENSION OF RELATIONAL OPERATORS 10 STRUCTURED TYPES

Relational operators already extend to structured types in the one
case of packed array of character. They should extend in tnis manner to
all structured types, To do so there must an ordering of elements
within a structured type from first to last and the comparison must
takes place in this order. This straightening should apply to several
other areas of the language as in input/output and constant formation.

FILES AND TEXT FILES

The Report {1) allows attaching the keyword PACKED to file types but
the CDC implementation does nothing with it. Actually, there is a
confusion in this area of file types. There are really three types of
files. There are unpacked files, packed files, and text tiles. The
type FILE OF CHAR, PACKED BILE OF CHAR, and TEXT are not equivalent.

In particular, an unpacked file of some type aligns items of the type
on any particular machine word (or byte) boundary that is convenient and
provides guick access. A packed file of type is implemented with every
reasonable effort to not waste one bit of disk or memory space.
Specifically, on the CDC machine, FILE OF BOOLEAN would be stored with
ore boolean value per 6@ bit word and PACKED FILE OF BOOLEAN would be
stored with 60 boolean values in one word. Also, witn packed file of
subrange of integer type, it should be possible to access any packing of
data on disk independent of word boundaries. The only operations
available on packed or unpacked file types are GET and PUT (or the
shorthand READ and WRITE with no type.conversion) along with..

file types. - Pirst, the procedures READ and WRITE are available
their full formating and type conversion possibilities. But a tex
is not a FILE OF CHAR. It is a specially handled character file
lines of text. It has line boundaries which a FILE OF CHAR does not
have. 1In fact, each line of text should be treated like a value of type
STRING.

Also, text files come in two varieties, paged and unpaged. This
attribute is established by declaration at compile or open time. An
unpaged TEXT file would be associated with devices such as card reader,
card punch, magnetic tape, or teletype input. A paged TEXT file would
be associated with a line printer or teletype output. TEXT files must
operate with the correct order of input and output on interactive
devices, It may be necessary to declare files as being interactive in
order to keep the run time system straightforward. v

The user should not be responsible for placing carriage control in
column 1 of every line of paged output. The paged output routine should
normally provide a blank for the line printer but omit it for teletypes.
A call to the PAGE procedure should set up carriage control (like page
eject or form feed) as needed.

8# ¥3ILL1ITISMHIN YISV

LL6T “AVH

£T 39vd

Text files are subject to translation between the operating system
character set and the internal character representation. The rules for
skipping from one line to the next have not yet been well formed and
will bhave to account for the straightening process of structured types.
The problem of reading blanks before end of file should be resolved once
and for all. It should be possible to read one line of text into one
STRING type variable and perform type conversion later.

For paged text files, it should be possible to automatically invoke
user supplied procedures at top and bottom of forms. Other user
supplied procedures could be invoked on various fault conditions for all
file types,

FORMATTED. INPUT AND OUTPUT

It 1is not necessary to resurrect the Fortran format to handle text
file formating in Pascal. The WRITE procedure field width
specifications are fine. They should be extended to the READ procedure.
It should be possible to read and write delimited strings of characters.
There should be an option for separator characters other than blank

between input or output items,
FILE HANDLING

Text files should be processed strictly sequentially. Random
positioning should be allowed on non-text files., Since most operating
systems provide for file structures that are more complex than currently
defined in Pascal, there should be some generally agreed upon extensions
to file operations that are not mandatory. The CDC implementation does
have the extensions of SEGMENTED files, The CDC version needs
additional extension for multiple file files. For example, add GETEOF,
PUTEOF, and WHILE NOT EOI (for End-Of-Information).

The current CDC implementation does a rather poor job of file
positioning at open and close time, Explicit file open and close
operations are necessary. A rewind or no rewind option is vital for
both. Other file attributes 1like system file name, buffer size,
procedures for handling ‘data exceptions should nave reasonable defaults
but be open to user specification.

OVERLAYS

The Pascal language needs overlays. The first use would be to reduce
the size of the compiler by doing value initialization functions in one
overlay and the main compilation process in another. A halfway overlay
attempt already exists in the CDC implementation to issue compiler error
messages.

Designation of overlays can be achieved by compile time options in
comments or by adding the keyword OVERLAY to the syntax. The choice of
which to use is open and should be decided. Overlays are organized by
procedure or groups of procedures. Explicit overlay calls should not be
necessary as in CDC Fortran. The compiler can recognize a call to a
different overlay and generate the appropriate code.

A good proposal for an overlay mechanism has already been made [31.
However, it already exceeds the capabilities of the CDC operating
system. To accomodate that system, no more than two levels of overlays
could be allowed and the implementation would be even easier if overlaid
procedures could be called only from the outer block.

As stated in the overlay proposal, overlays can be viewed as is the
designation PACKED. A particular Pascal implementation will try to
follow the overlay directives and the program will always run correctly.
However, the object code may not be as deeply overlaid as specified.

PREAMBLES AND POSTAMBLE

A compiler does not stand by iteelf within a computer system. A well
developed language system must have a wide range of subprograms
available for use. One reason that Fortran will be hard to displace is
the large number of subprograms already developed for it. .

The implementation of separately compiled procedures in CDC Pascal
was a gigantic step forward in increasing the usability of the language.
But now the user is burdened with declaring all external procedures he
intends to use, The declaration is necessary but it should come from
the language system rather than the user,

The compiler cannot be reassembled every time a new subprogram is
added to the 1library, and it should not carry declarations for every
possible external subprogram when only a small number of them for a
specific application will be accessed.

The solution is to allow the selection of several preambles which
initialize the compiler to a particular application environment. The
compiler would 1look to the preamble for each declaraction section
(PROGRAM, LABEL, CONST, TYPE, VAR, and subprograms) first and then
compile the corresponding user declaration section. Preambles should be
input as ordinary text or specially processed system text records.

A provision for a postamble would be useful to allow driver main
programs in a student environment or for a non-code producing dummy main
program when compiling library subprograms.

The preamhles and postamble allow a user job to be compiled in any
desired environment. By allowing full procedure parameter description
in the preambles, including procedures passed as parameters, complete
compile time checking of all external subprogram linkages can be
obtained.

Also, some mechanism of protecting access to the elements of a
structured type introduced in the preamble is desirable. Tnis would be
useful in making certain data structures appear as basic types to the
user.

[1] Jensen, Wirth, "Pascal User Manual And Report", 2nd Edition,
Springer-~vVerlag, 1975.

[2] wirth, "Algorithms + Data Structures = Programs®", Printice-Hall,
1975.

[3] Pascal User’'s Group, "Pascal Newsletter™, No. 5, September 1976.

(*Received 77/03/24.*)

8# ¥3ILLITSMIN 1IVISY

LIBT “AYW

hT 39vd

A PROPOSAL FOR INCREASED SECLRITY IN THE USE OF VARIANT RECORDS

WILLIAM BARABASH
CHARLES R, HILL
RICHARD B, KIEBURTZ

STon IRk T Yo7y

The usa of variant records in sost Pascal implementitions is dangaroua
because most compilers do not emit a check for conformity with the value of
the tagfield when a variant field is referenced. Indeed, the latest version
of the Ravised Pascal Report defines s language in which the tagfield may
sven be absent, making conformity checks impossible! Even so, when the
tagfield 1s iaruut and tha compiler doss emit conformity checks automati-
cally, the programmer still has the ability to dynamically assign valuss to

_ the tagfield, ’

We propose that the variant field of a record be protected from such
abuse, either .écﬂnnlly or intentionally. This means that the compiler
should be required to emit conformity checks when a variant field is accessed;
that the tagfield must alvays be present in every variant record; and that
the programmer not be allowsd to alter the tagfield in a variant record by
mesna of a simple assigoment atatement.

Currently, & verisnt record can be crasted dynsmically whan tha sten-
daxd pro«duuﬂ(]‘h is applisd to a pointer "?uhbh that .42 bound to &
yaxtant recerd typa. This atenderd procedure hae the ability ta fnitialize
tag fislde to constante specifiad in tha call, We propoas that tharseafter
the type of tha variant record is frozan by tha values of the tagfields.

Tha fields within the record can all be referred to; however, 1f a field in
the variant part of tha record fa referred to, tha tagfield will luton;ti-
cally Be teated fox conformity.

Thiz {s not sufficlant, Decause veriant recorda in a Pascal program

Emruﬁnam-uﬂ, baing erun"l on block entry, Mrmm can
- enly be titialtsed to “undefinad®. Also, during the itfetime of a dynam~
fsally created varfant record, it may De created and used, then put on a

free list, then used subsequently. The subsequent user might want a dif-

ferent set of values assigned to the tagfields of the record. To get

around these difficulties, we propose a new standard procedure which will

1) set all of the fields in the record to “undefined", then
2) ' initialize the tsgfields in the record to the constant

values specified in the call.

A call to this procedure would ba axactly like a call to -und.nd procedure
New, except that ‘chc first parameter would designate an already--existing
record variable inatead of a pointer variasble. Such a procedura might be
called "Renew"”. Note that the use of Renew has one chief drawback, nsmely
that when & variant record is created, space must be allocated for the
largest possible variant field, On ths other hand, if a variant record is
craated by means othax than the standard procedure MNew, ths maximm space
must be allocated anyvay. Furthermore, garbage collection would be simpli-
fied: there would be no need to provide more than one parsmater to standard
procedure Dispose.

Lastly, it might be argued that enforced run-time conformity checks
when a variant field fs frequently referred to can severely degrade the
performence of a Pascal program. We proposa a slightly modified xith
atatement which can open the scope of & variant record with a tagfisld
valua assertion, The assertion is chagkad at run-time once every time
the with V atatesent is lﬂtﬂl‘ﬂ.}f u:m the body of the with statement,
any reference to a verisnt field of th;mord can be checked for comformity
with the asserted values of the tagfields at compile time. Such a statement

would have the syntax
with recordvariable (comst 1,..., const N) do §

meaning that we assert that the variable "recordvarisble” has tagfields

whose values are “const 1" ,,.., and 'const N", as {f the call
Renev (recordvariable, const 1,..., const N)

wvas made to initialire the recoxd.
(*Received 77/03/27.*)

8# Y3IL1ITSA3IN 1VISVd

LLBT “AVW

ST 39Vvd

Update on UCSD PASCAL Activities

Kenneth L. Bowles

Institute for Information Systems
University of California San Diego
La Jolla, California 92093
(714)452-4526

17 April, 1977
LSI-11 Software

UCSD has recently started using a single user software system for
microcomputers, with all major programs written in PASCAL. The
compiler is based on the P-2 portable compiler distributed by the ETH
group at Zurich, but it generates compressed pseudo-code for a much
revised P-machine interpreter., As currently implemented on the LSI-11,
compile speed is about 700 lines per minute (1000 on the PDP11/10).
The system includes an interactive monitor, editor, utility file
handler, and debugging package in addition to the compiler and
interpreter., With 56K bytes of main memory, and dual floppy disk
drives, it has proven more convenient and faster to do all software
development on the microcomputer than to cross compile from a big
machine. Whereas we have been using versions of this system that
depend on 1/0 support from the RT11 operating system distributed by
Pigital Equipment Corp., our new system is independent of any external
software support. The resident monitor, in terpreter, and run-time
support package occupy an aggregate of about 10K bytes of memory.

Operation of large programs is facilitated through the concept of
"Segment Procedures", which are rolled into memory only while actually
invoked. The compiler (20K bytes), editor, and file handler are all
separate segment procedures. One segment procedure can call others,
and segment procedures may be declared nested within other segment
procedures, to allow flexibility in memory management. The user's data
space expands (or contracts if necessary) to take advantage of as much
Temory as possible after the appropriate code segments have been

ocaded.

Our plan is to have the new system completed to the point where it may
be released to others by mid summer, 1977, with documentation package
included. During the summer, we also plan to complete a graphics
support package (including an editor for graphics oriented CAl
materials), an assembler for PDP11 native code, and a compiler option
allowing selected PASCAL procedures to generate native code rather than
P-machine pseudo code. The system is designed to make relatively
painless the problem of adding native code routines programmed in
assembly language, allowing a user to augment the set of built-in
functions and procedures where efficiency is important. This note has
been composed and printed using a proprietary extended version of the
text editor intended for use with a CRT display, which should be ready
for release by late summer. The system should be usable on any PDP11
system capable of bootstrap loading from RX11-compatible floppy disk
drives, or from the drives supplied with the Terak Corporation LSI-11
based machines (see next section). Further details may be obtained, on
request to the address given in the heading, in separate notes titled
"Status of UCSD PASCAL Project"™, and "Preliminary Description of UCSD
PASCAL Software System",

LSI-11 Hardware

In addition to the well advertised PDP11/03 systems available from
Digital Equipment, several smaller companies are offering stand-alone
computers based on the LST-11 that would be directly suitable for our

software. We have been particularly interested in using a stand-alone
machine with low cost graphic display for interactive educational
applications. 1In connection with the EDUCOM Discount Program (see
EDUCOM Bulletin, Spring, 1977), it now appears virtually certain that
the Terak Corporation 8510A will be available to member institutions
for about $5300 per machine (LSI-11, 56K bytes RAM, single floppy disk,
CRT for superimposed but independent text and graphics, keyboard, RS232
asynchronous interface for network or printer connection). An example
of the graphic display of this machine is attached to this note.

Other Microcomputers

Anyone who attended the West Coast Computer Faire in San Francisco
should have come away impressed that small stand-alone microcomputers
are big business and here to stay. It is possible to re-implement our
PASCAL based software system on systems based on any of the most
popular microprocessors within about 3 months of work by one
programmer. At UCSD we have started to re-implement for the Zilog 280
OEM series of modules, which could serve as the basis for PASCAL
interpretive operation roughly as fast as the LSI-11., At the Faire, we
talked with principal officers of most of the well known microcomputer
manufacturers who sell to the hobbyist market, and encountered almost
uniform enthusiasm for the idea of making PASCAL available on an
industry-wide basis. On the basis of those conversations, there is a
reasonable chance that our PASCAL system will be avajlable later this
year for use with the 8080A, 6502, and M6800 microprocessors in
addition to the LSI-11 and Z80.

Proposal for Manufacturer Independent PASCAL System

There is widespread frustration, among those who make and sell
microcomputer systems, that only BASIC is generally avallable, and that
no two BASIC implementations are alike. Many of those we talked with
at the Falre asked whether PASCAL would be standardized, to avoid the
problems they encounter with non-standard BASIC (in addition to
providing a more powerful programming vehicle). Even a casual reading
of the PASCAL User Group newsletter is enough to convince one that:

a) people are finding it necessary to enhance PASCAL for their own
particular applications; b) the heterogeneity of the enhancements
already reported is so great that no committee exercise is likely to
produce a standard.

As an alternative, we belleve that a chance exists to establish a
defacto standard for PASCAL, at least for small systems, by starting a

" bandwagon effect in the microcomputer industry. A good definition of

the underlying language for such a standard is contained in the Jensen
and Wirth "PASCAL User Manual and Report", To implement a complete
interactive software system, with adequate efficiency to run on a
microcomputer, we have found it necessary to add built-in functions and
procedures for handling text and graphics, and an EXIT(<procedurename>)
built~-in for clean termination of highly recursive programs. We have
implemented SETs of up to 255 members in a way that uses memory
efficiently, as well as Packed Arrays of BOOLEAN. For READ from a
keyboard, the implied GET has to happen before the implied transfer
from the window variable associated with the file. For handling floppy
disks and other small storage media, we use the DEC standard of 512
byte blocks, and allow logical records conforming to any structured
type allowed in PASCAL. 1In most other respects, we have been able to
conform closely to the language defined in the Jensen/Wirth book.

g# 4ILLITSHIN TVISY

AVH

LL6T

9T 39Y%d

If one common PASCAL based software system were to become available
almost simultaneously for most of the mass distribution microcomputers,
that system would establish the basis of a defacto standard for small
stand-slone computers. Changes to such a system would certainly be
needed with experience, but those changes might well be made readily
available to most users through "down line loading" of object code
through the dialed telephone network. Control of the PASCAL language
standard might well be vested, at least temporarily, in a committee
appointed by the PASCAL User's Group. Fast turnaround communications

anong the members of such & committee could be supported by "Electronig-

Msil® techniques over the dialed: telephone network. .The verbal

responses we received: from the manufacturers st the Computer:Faire
SUSEEst -Lhat an unusukl ‘Upportuiity, that may Hdt be-'rapested, exist
in wid 1977 to establish a defedto stapderd 1n AN menper described’
‘hergs) Grotp to 364A with us at UCSD in -

W Ne invite the PASCAL . User's GF é1h :
bringlng this about this-summer.” In most respects, the language and

systew definition deaign queations can be separated frol implementation -

details. We have Jought support to allow some of the advanced computer
science students at UCSD to perform the implementation work on as many
of the microcomputers as possible. Representatives of other
institutions would be welcome to work with us in La Jolls, sither on
system definition or implementation. However we will not be able,
ourselves, to devote a major percentage of our working time on

definition of a standsrd.

Interested readers

nvited to request cop wing

are .of the folle
2 e

separate notes per $0-the.points discusied -4n this seotion: “*an
Appesl ' for Support: urer - Independent: Softwaret), SRR
*DireciDinled TelesMi(! . L Seftwara/Coursevare
Exohenge” , "Minimum: & 1300t e Lor- UCSD PASCA

Systew’, "T““‘Q"_“l"f? 398 Stand-AXone Complter®,’

Introductory Textbook

For the last two years we have used PASCAL as the basis of the large
attendance introductory course in problem solving and programming at
UCSD. The course is based on a textbook by this writer, that so far
has been printed in the csmpus print shop. Student responses have been

unusually favorable, and the course reaches more than two-thirds of the

undergraduate population even though it is treated as elective for most
majors. This response:résults partly from the nonenumerical approash .
of khe book, partly; ¥e
the POP11's, and p

Zatudent interest 1n-our.. intern :
ffom our use of Keller'a:Personslised Zystem of
Instrudtion (PSI) 8°% teasching method. Though suitable for PSI, the
book can also be usdd §s the basis for a conventionsl oourse., At the

~invitation of Professor Darid Gries, a¢ting a§-Somputer scimnce area
editor for Springer Verlag publishers, the book will be published in
paperback form this summer, The production sshedule will be tight, and
we anticipate that the first copies will be available darely in time
for the start of fall quarter classes in lete September. Springer is
interested in knowing Wwho might be interested in using the book and
when. Unfortunately, alterations to make the non-numerical approach
more readily accessidle on many machines will make it .difficult to
circulate sdvance aopies of the finsl text until late June at the
sarliept 11 Becha o9 ;

Engiish text, andire 3 STRING. variables sn@ bupporting

functions that we have added to PASCAL. In spits of this, the students
learn the ssme progremming skills that are taught in courses using
traditional algebraic problem examples.

to teaching with graphics oriented problem examples, using an epproach
motivated by the "Turtle Graphics" used by Seymour Papert of MIT. The
microcomputers now becoming available make it possible to teach with a
graphics orientation at virtuelly no higher price than needed for

augment, and often replace, the text oriented examples with graphics

display, seversl alternate possibilities exist., Our built-in functions

_existing PASCAL compilers for other machines, and we will supply
.~documentation to assist in thet process, ..A description of the

 Project™ already sited. The implementation will sssume. a graphic
" display based on the "bit-map” principle, for which many devices a

 B6700 PASCAL Compiler .
" A PASCAL compiler wh:

“variant of the P«2 portadle gcompiler on-which we have based the

-, UCSD Computer Center, La Jolls, CA 92093
systemion RS A

‘completed.

Since the inception of our project, we have wanted to orient the course

non-graphic materials. Accordingly, the textbook will be revised to
examples., For potential users lacking @ microcomputer with graphics

and procedures for graphics should be relatively easy to add to

built-in's needed is nontained in the note "Status of UCSD PASCAL

avsilable in the microcomputer industry. Alternste display drivers -
will also be provided for the Tektronix 4006, 4010, ... series of :
direct-view storage tube terminals. Successful, though crude, plottin
of the graphic output will also be possible on ordinary line printers.
High quality graphic output is possible on matrix printers such as
those made by Printronix (the graphic example attached to this note),
Gould, Varian, and Versatec. : . ,

e# YILIIISAIN TVISVd

§h generates nstive.gode for the B6700 1s now ik
operation at UCSD end available for dist¥Fibution from the UCSD Compiles
Center. The compileriis written in PASCAL; -and - is based on the ;-ggyg

miorocomputer implementation. Compile speed isabout 5000 lines per
minute of logged processor time. This compiler has been used for - ..,
teaching large classes at UCSD for the last two months. As far as we
know, most of the serious bugs in the original P-2 compiler have been
corrected in both the B6700 and microcomputer implementations. The
B6700 compiler provides access to most of the extensive file handling
features of the B6T00. At present, no implementation documentation has
been completed for the B6700 compiler. The Computer Center will almost
certainly generste such a document given an indication of interest in
using this compiler by other institutions, Readers interested in
obtaining a copy of the B6700 compiler should econtact Henry Fischer,
(71&)952~“059,;‘4 NP

i

AN

Apology to COrrgaggng!ntl

1 offer an apology to the many people interested in our PASCAL work who
have tried unsuccessfully to reach me by telephone or letter in the
last few months. Currently I must depend upon several pooled
secretaries who are not easily acceasible., Having been occupied with &
heavy teaching schedule, and with a committee assignment consuming one
or two full working days per week, the correspondence has piled up, The
series of titled notes and position papers cited earlier have been
generated in self defense as a way to answer the many inquiries. The
committee assignment has entered a dormant period. Future written
requests for these papers will be answered promptly, but telephone
inquiries may remain gifflou Jountil. the' ‘e of the book is

etved 77/04/20.%)

=TT,

H1a

NG Qg Bistel Bt

S

l'. o
1?;: s

These glj;‘,."ei dﬂzw b{; Suadl Phscat P”"J"ﬂ-“'vs' ow Terek Grﬁ E5l0hk at UCSD

ConTac

K L Bowles
(70 ds2 - 4526

SOME COMMENTS ON PASCAL 1/0

While admitting that PASCAL has 3/0 specifications involving the concept of
files and the GET and PUT statemesnts that are consistent with the flavour
of the language and with theoretical manipulation of data, I feel that it is lacking
in simple, easy to use I/0 and in flexible 1/0.)

In any practical programmiTlty application, I/0 is used for two main functions:

(a) 1Input of data from, and output of results to the real world.
(b) Permanent storage of data external to the program but internal to the

computer, e.g. on tapes or disk.

Concerning the !it|€ function, I feel that, not withstanding the READ function
in PASCAL, the use of TEXT files can be rather cumbersome and tedious. This is
particularly so when dealing with string input (what delimits the string?) and when
being used by a beginning programmer. I would like to see some form of simple I/0

akin to the free format 1/0 of the PL/I GET LIST and PUT LIST concepts.

1 have less of a complaint concerning the mecond function, but would muggest
that information to be stored is often not homogenous as is effectively required by
PASCAL files. One could argue that different types of data should be stored in
different files, but this raises the problem of correlating the data in the files.
Alternatively, one could use a file based on a RECORD type with a variant part, but
this implies a varying size to the logical units of the file and may be difficult
or cumbersome to implement on some computers. Finally it would be nice to be able

to easily randomly access files and to update existing files in place.

I have not yet sufficiently formalised any alternative or additional I/0 specific-

ations for PASCAL and would be interested in hearing from anyone with ideas along
these lines. Note that I consider it essential that any such specifications should

as far as possible follow the PASCAL principle of being machine independant.

Chris Bishop (*Received 77/04/07.%)
Computing Centre

University of Otago

P.O. Box 56,

Dunedin

NEW ZEALAND.

g# ¥3I113TSHIN TVISY

LL6T “AVH

8T 39Vd

“ McMASTER UNIVERSITY
HAMILTON, ONTARIO, CANADA
LSS 4K1
DEPMWT OF APPLIED MATHEMATICS

Mr. Andrew B. Mickel, i
Editor, Pascal Newsletter,

Computer Center,

University of Minnesota,
Minnespolis, Minnuou. 554585
U.S.A,

‘ . January 14, 1977,
Dear Andy: .)

;oL From the c "st.mdardiutim" iu M—- qul 6 it seems
fairly obvious that Hmpty Duq’ty'a meaning of the term meaning. As the rule.
- _The letters seem o fall lito two categoriesy . on'€he one hand We have calls =~
“for the formation of an Yo ﬂcul” tandards committee.. ard on the other claims
. /.that "standard Pascal™ 4§ Ning adheyed’ ta. buz neddisary nodifidations need .
‘-itobonadofot;wy m;.“ - 5 ‘ﬂlﬁwm

What are tho objoetlvu of ltandsrdiuuon?

If the objectives are to ensure that l program written in establishment
A can be run at establishment B without any changes whatsoever, whether or
not A send B have exactly the same computers opersting umdier exsctly the same
operating system, then I maintain that this is jest a pipe dream, Eocwu .
_even . program written in ANSI standard FORTRAN in an IBM shap will need to =
_be _werked over if it 3920 yun in a CDC mg; ‘Horeover, s null change in . i
-gm operating system caigntail chmxes in tation of s language _
Cavem Af the change 13 cowpls users of nll othot lmguun
*&T m sane osttblim ‘

S AR 1 o operating psten
. M&rﬁblmmo, Aot 3m . hndwan-indopm: ‘language is thexre any

of us being able to achieve "perfect” standardization.

Pascal happens to be less of an ‘0S-independent langusge than, say,
FORTRAN. Eighteen months sgo it took me quite a bit of effort to make some
implementation-type changes when McMaster went from SCOPE 3.4.3 to 3.4.4.
These changes were necessitated by changes to the source-line termination
conventions used by the INTERCOM EDITOR made by CDC, Thers would not have
been any need for thess changes if I were doing all my computing in the batch
mode via the central site. Apart from being lazy, I find that working
through & terminal incrsssés.my throughput, so that it made sense to me to
.depart from the defacto stendard Pascal as distriw‘tod by ETH. I know of
" w'swyeral universities whig mede similsr changes for with the same reasons,
/4 move sericus point 15-4he necessity to empty buffers after each meassage.
'3 would have liked to change tho language specification concerning files,
but tesisted this témptitice Fand changed the cperating-system interfsce . >
Anstesd. Nwortholm, ¥ J T:want to send an interittive program of wine to
someone else, 1 ilso have to send the seventy odd changes to the interface
snd hope that this is ehough information to allow the rec¢ipient to change my
program so that it can run under his system. I will go so far as to say that
McMaster offers "standard Pascal”, but not the standard Pascal system. |
doubt if any "langusge stsndsxrd" conittoe would find it appropriate to consider
points such as these wh:leh do not affect the language as such.

7T have made a poinﬁ of xilling every version of Puul other than the
- current one as soon as ik has been recieved and tested, . Admittedly, the
‘wumber of Pascal users ot NMcMaster $3 small, but PORTRAN is v«)r"duply
entyenched even amoung' " the.Compliter Science Fatultyi.: Mthin thé next few
; M-8 aecond CDCSA0Q TG be run ¢ ‘that :
requirad; ,,

OPEN FORUM FOR MEMBERS

i

To summarize: let us be perfectly clear about what we mean by
"standardization”. I would like to point out that the University of Toronto
is trying to enforce standardization of thelr SP/k languages by distributing
binary modules only and prohibiting recipients from seeing compilers in source
form. Do we want this approach? In other words: 'Weak or strong standardization?”

Yours sincerely,

- N. Solntseff.
NS:1ib : CE : -

P.S. My offer of help still stends. Of the uu-oe tasks listed in PNEWS 6,
I do not think that I could manage the biblingnphy prt:porly.

P.P.S. I would like to see a 'bug" corner giving details of bugs real or
imaginary. One can then know immediately whether the bug one
discovers has been noted by someone previously.

8# 43I1L13ITSAIN TVISY

PATTERN ANALYSIS & RECOGNITION CORP.

ON THE MALL

ROME, N. Y, 13440
TEL 315.336.8400
318.724.4072

Mr. Andy Mickel

Editor, Pascal Newsletter
227 Experimental Engr. Bldg.
University of Minnesota
Minneapolis, MN 55485

LL6T AVN

12 January 1977

Dear Andy:

I would just like to make a short comment on Richard Cichelli's
proposal (Newsletter #6) for direct access files in Pascal implemented as
long array’'s. That is, I feel the suggestion was excellent in terms of
slmplIcIty and elegance, but that the word "long" is an unfortunate choice.
The compiler doesn't haye to be told that the array is long or short -- 4t
knows the exact length of every variable. What the programmer is really
trying to tell the compiler is that it is all right for the array to be
allocated on a slow, mass storage device because faster access speed would
not justify (for this particular variable) using the required amount of
scarce main storage. Thus, I submit that "slow array" would be more ap-
propriate, as it specifies an attribute of the storage allocation, just as
does the word "packed".

Thank you.
Sincerely,

PATTERN ANALYSIS AND o
-RECOGHITION CORPORATION b

- : ., N
By M\‘M N\QM
Michadl N, Cohdicd
Programmer

5T 39Vd

MNC/pak

OPEN FORUM FOR MEMBERS

UNITED
s | BN

UNITED COMPUTING SYSTEMS, INC., 2628 WARHING TON, KANSAS CITY, MO. 64108 / 818 121.9700

Janvaxy 4, 1977

Dr. G. Michael Schneider
vexsity of Minnesota

114 Lind Hall

Minneapolis, Minnesota 55455

Dear Dr. Schneider;

I was impressed by your concern for the future of PASCAL, as ex- .
pressed in PUGN #6. I also agree with your proposal of the initiation
of "proper administration" of PASCAL.

Perhaps, however, it would be wise to include some direction in the
areas of P. Brinch Hansen's concurrent PASCAL and Niklaus Wirth's
MODULA (if/when it goes). It would be unfortunate if only the"appli-
cation" areas are "well tempered® and the related "systems" areas are
left undirected. Since there is a possibility that we at UCS may be
doing some work in more machine dependent areas (using MODULA), it
would be advantageous to have a "sounding board" for linguistic adapt-
ations (not necessarily including all machine dependent extensions).
Another advantage to this approach would be to help dispense informa-
tion on how various machine dependent language extensions were done.

Hopefully, this request, if incorvorated, would not significantly in-
crease the burden uvon the committee. It could significantly increase
the scope of PASCAL and PASCAL-like usage, and at the same time, hove-
fully prove that an "adapted PASCAL' is a good (great) "system level”
ianguage.

Your consideration of this matter is aporeciatead.
Sincerely,

UNITED COMPUTING SYSTEMS, INC.

L. D. Lundis

Distributed Systems Division (* In a phone call April 11, Larry wished to

clarify that he didn't view Pascal as a SIL
and rather that emphasis should be placed

on MODULA. He urged that anyone releasing
Pascal-ware should put it in a source library
editor compatible form against which future

LDL/mgr
cc: Andy Mickel
John Strait

o

modifications can be made (such as CDC MODIFY).*)

THE UNIVERSITY OF BRITISH COLUMBIA
. 205 WERSBROOK MALL
VANCOUVER, B.C., CANADA
VeT 1Ws

DEPARTMENT OF COMPUTER SCIENCS 14 February 1977

Andy Mickel

University Computer Centre
227 Exp Engr

University of Minnesota
Minneapolis, Mn 55453

Dear Andy,

I would like to add one more opionion to the etandards issue, along with the
idea that Pascal might someday replace Fortran.

First of all, there should be no doubt that Standard Pascal will never replace
Fortran. Describe Pascal to a numerical analyst and he will laugh, Several mandatory
extensions include:

- Parameter arrays of unknown eize
- Shared variables for separately - compiled procedures
~ Input formatting and improved output formats.

So suppose that we standardize a language resembling Standard Pascal. We lose the

time and energy of those making the etandard and those modifying Pascal implementations.
More people are using the language, so later extension efforts must live by the frist
standard. Meanwhile, Fortran programmers look at the language and reject it, so they
will never bother with the revised version.

Why shouldn't Pascal be revised? Fortran's main problem is its age. Pascal
has been around for a number of years too, so it could benefit from some re-~design.
Some of the improvements found in Concurrent Pascal, Modula, and Euclid might well be
added to the language. (It is not at all clear that the result would still be
called Pascal.)

Hopefully, this new language would resemble Standard Pascal to the point that existing

programs could be mechanically translated to the new language.

If the hopes of Pascal users are to be realized, it seems that we should recognize
the need for a language re~design and work towards the organization of that effort.
Ve

//’/i/,s§,cere1y, /// ‘7
/" / 14 7

o, {
/ 2 obert' A. Frdley
Assistant Professor

<

§# YILL1ITSMIN TYISY

LLBT “AVMW

0z 39%d

ABT ASSOCIATES INC.
B9 WHEKLER STREET, CAMBRIDGE, MASSACHUSETTS OR138
TELEPHONE *+ ARKA 017-408-7100

24 January 197

oy sl
p. Engr

University of MHrsdot 3

Minneapolis, Minn’; S5ASE

. Dear Andy:

Enclosed is the check I promised for an additional copy of Number 6,
and a two-year extensfon of my subscription. I am looking forward
~to a long series of interesting issues. .

7. There are several issuss I would 1ike to raise which 1 shall attempt
<% to group togethar as {1) Standards, (2) Mods to the Standard, (3)
7 Mods to the fmplementation, and (4) available softwars.

.. - -MNow that there is an -abvious push for the formation of a Standards
" Conmittee in the abstrect, I would 1ike to put in a pitch for our
interests, and suggest that PUG should be responsible for the organ-
" {zatton of the Committee. It seems appropriate to suggest that PUG
might reform under SIGPLAN as a Special Technical Committee while
putting a first draft ANSI Standard for the language. Any help you
might need in getting this ball rolling which I could provide is
available for the asking.

Now that I have lopked over three suggested implementations of vari-
able dimensioned arrays, it is clear that some mechanism must be
provided to review and coordinate comment upon proposed extensions
~-and modifications to Standard PASCAL, My favorite extension is the
o incluston of -OTMERWISE as the fina):-branch unier the CASE statement;
-0 suggestion whith 1 know causes you no end of grief. 1 have included
: r':v sed syntax graph for the case statement Which demonstrates the
eature, P e T .o

“#TAS we have discussed oh the phone, the CDC 6000 implementation could
be improved. In'sddition to the proposals made before, 1 would 1like
to recommend that PASCAL and the system routines be modified so that
when files are passed as formal parameters, the FET address is passed,
in the same manner as a1l of the other SCOPE and KRONOS software.
Given that PASCAL has an already demonstrated to be inadequate file
system, this minor change would allow the user to develop and test

- new 1/0 routines without all of the additional calculation fnvolved LR

Mérn to-the 6000 FET addresses. -.If

Andy Micke] -'2
24 January ‘1977

The last 1‘- ébnéihs available softvn would like ;,t'o’knw how
we start a register of PASCAL and PASCAL callable software for exchange

For example, 1 have just completed a PASCAL core dump interpreter which =~

1ists specified Tocations of the user's (M and control point area in
octal, COMPASS, alfa, real and integer with a wide range of options.
This 1s useful, obviously, for systems work on a 6000, although the code
is interesting. It comes with its own PP routine, BCD, which creates a
Binary Core Dump on a user~provided file for later analysis. Given that
PASCPMD does not help when the routine being devaloped is in another
language (e.g. COMPASS), being called from a PASCAL mainiine driver,
this is a real boon.

Looking forward to your action, I remin

Sincerely yours,

ichael Patrick Hagerty
Director of Systems Research
and Design

g# YIL1ITSAIN 1VISYd

TZ 39vd

LLBT ‘AVM

SpeciaL Topic: STANDARDS

The following set of five exchanges regard the topic of Pascal standards. It was first
prompted by a very long letter by Niklaus who has come around to the position of
conventionalizing some extensions beyond a standard. Niklaus invited Richard Kieburtz and
Jérgen Steensgaard-Madsen to reply.

At the Southampton Pascal Symposium I was a late addition to the program for the purpose of
introducing a discussion on standards and extensions. The 4 pages are reproduced from the
proceedings in order to explain the assumptions made and to report on the reaction. Before
my presentation, Bjarne Dacker urged that a consensus be arrived at, rather than a soon-to-
be-forgotten discussion. As the discussion began, Tony Addyman (who had informed others of
his intentions to get an official (IS0, ANSI, etc.) standard in Here and There PUGN#6)
pointed out that perhaps the most important argument in favor of an officially accepted
standard is that if trusted Pascalers don't do it someone else will {like a large computer
manufacturer) and do it their way!

Another thought that arose during the discussion was that although Nikiaus has shown an
unwillingness to move in and clear the atr, no one would stop him if he did. There was
general agreement to this as was the general distaste of creating a "standards committee."
So most important (as well as being good news) was that Tony felt that if anomalies in the
Revised Report could be fixed up, then it would be relatively easy to work within the
British Standards Institute (PSI) to achieve an eventual IS0 standard - without resorting
to a standards committee. Tony agreed to send in a 1ist of such complaints against the
Revised Report. No one at the Symposium objected to Tony's proposed actions,

David Barron who had agreed to Bjarne's suggestion, conducted votes(!) on each of the three
items 1isted under Considerations of a Standard. The first passed unanimously, the second
passed with two half-hearted no votes changing to abstentions, and the third passed with
only 4 no votes. However in each case approximately one-third of the people present did not
vote. [pointed out that I would be seeing Niklaus within a week and would put these ideas
to him. The discussion ended leaving people wondering about the future.

When Niklaus came to Minnesota to talk on Modula March 31, John Strait, Jim Miner, Dan
LaLiberte and I put these ideas to him regarding standards. [pointed out the need for an
officially accepted standard noting the consensus in the Symposium - which surprisingly
had not included adding features in the process.

Niklaus and I agreed that I would collect from Pascal users and Newsletter readers suggested
topics for necessary clarification in the Report and would work with him on such points so
that they could then be included in the Standard. We will also work on a conventionalized
set of éxtensions to be published in a future issue of Pascal Newsletter. It would be nice
that if by the end of 1977 these matters were cleared up and that we had an ISO standard.

I am of the opinion that real progress without the potential pollution of the language is
being made.

So it is really sad to see some people (for example, George Richmond and some of the aspects
of his article in this issue) call for more and more redundant additions to Pascal.
Sparceness is Pascal's nature (and is a virtue). Anyone who is using Pascal should try to
make do with what facilities are already in the language. For example there is so much of
a cry to see an otherwise clause added to a case statement. The facilities are already
there for a large majority of instances:

if selector in [set of case labels]
then
case selector of

end’
else

After a period of using and getting to know Pascal, one can conceive of many natural
extensions and wonder why these were left out of the language. Answer: a line had to be
drawn on the total number of features in order to adhere to another design goal: efficiency
of realizationT T - Andy Mickel

XEROX

Xerox Corperétion

Palo Alls Howuarch Center
3323 Coynic Hul Roay
Paio Aito, California 94304

January 31, 1977

Mr. Andy Mickel

Editor, Pascal Newsletier
Computer Center
University of Minnesota
Minneapolis, Mn. 55455

Dear Andy,

| have received the Pascal Newsletter No. 8 and would like to congralulate you on a
very nice job. By now it is quile evident that the Users' Group and the Newsletier
cater to a genuine need. Thank you also for your latlers inviling me to express my
opinion on several issues raised in the Newsletler in general and on standardization in
particular. The latter is a racurrent topic, although the reasons why a "standard” is
needed in addition to the Pascal Report are not enlirely obvious,

Standards are successlul if, and only if, many people feel that each ol them can profit
by adhering to a mutual consensus. and that devialing from that consensus is
detrimental to their indivigual interests. In the case of Pascal, there is the original
language definition, and any implementor must decide for himselt whether or not to
adhere to it. All too often, he is tempted by his own bright ideas on how to do better
on fittle points, and unfortunately it is the user of his impiementation who will later be
inconvenienced by the non-standard. Bul, alas, even the existence of a standard
cannot prgvent this from happening. | agree thal there are a {ew areas where the
temptation to extend the language is particularly slrong, and where it might indeed be
benelicial to have a commonly accepted way ol extending Pascal.

This sounds like a good idea; yel | have my reservation about declaring these
extensions to be Standard Pascal. Alter all, there are many implementations in
existence, and it would seem unfair to suddenly declare that what once was a Pascal
compiler now suddenly isn't so any longer. Also, once you start on the altey of
extensions, there is seldom a consensus about where 10 stop. An even more serious
problem is the published literature on Pascal, which, | believe, would have to be
properly updated: the Report, the User Manual, tulorials, books, etc. There is a great
deal of virtue in stability.

After thess caveats, let e list and discuss those points wherg | nevertheless believe
that a recommended set of extensions could have a beneficial influence.

1. Dynamic arrays. ft is generally agreed that dynamic arcays are missing and should
be made available, even il they cause some conceptual inconsistencies with Pascal's
notion of strictly static typing. There remains the question of whaether this extension

8§# 4ILL1ITISHIN VISV

‘AYHW

L1611

¢¢ 39Vvd

N

should bring truly dynamic arrays (as nv" Algol 80}, or be restricted to parameters in

procedures (vmich do not involve any actual storage allocation) such as in Fortran.
Should the dynamic property e applicable 10 named arrays (Ike in Algol 80), or to

m refsrenced via peislers only:{see SIGPLAN Notices 12, 1, 82-88)? in any

case NG for good repkons, wray botnds must stways be slatic, if the array is &
component of & record of a file structure, The proposel of Jacob! (PN 8 p. 23) mests
all these considefations, and has proven to be sconomicatly implementable,

2. Amsy- and Record-Consiructors. The primary motivation is ths desire to have a
convenient facility for initiafization of tables. Yet if a notation for structured values is
introduced, it might as well be available in general instead of bsing restricted to
specific places. For example, given a declaration

a:amay [1. 3] of
record i integer; x: real;
s : packed array [0 .. 4] of char
ond

an udmmcm might look like
a = {(5, 0.3. "BEGIN"), (3,71.2, "END *), (4, O.1, "GOTO o))

#t is of course tempting to admit general expressions a8 constructor slements, but this
may give rise to some nasty pittalls. Consider, for instance, the assignment

@ s {(a[2].}, a[3].x, "ARRAY"), (a{114, a{3).x, alk)s), ...

From the point of view of implementation, and perhaps also of clarity of exposition, it
is reasonable to require a type idenlifier preceding each list of component values.
Yat this appears to be quite cumbersome In the case of siructured components of
(long) arrays, aa in the example above, where the Identitier would have to be repeated
many times. Moreover, it appears that the use of constructors with type identifiers
would necessitate the possibility to inciude cgonstant declarations alter type
» definitions. | This would untortunately thl! a ghange of syntax. Also. a notation for
,dldlno m& m npnuna comporients would. oppenr s desirsble. . This. may

w e m m more lmm fo the Tt which_
mmmr, "1 am, howaver, rather dodottul about thelr indiapensibiity:

3. Defasult W case fists. Certainly thers are siluatiofis where 1t might ba convenient to
have & defeult case being seiected when the case axpression is unequal to el case
\fabels, such as when the case expression is of type char, and you do Aot wish to
explicitly iist all “other™ characlers. (But convenient is not the same as necessary).

4, Formatted input. The only justification for such a fecility is convenience in reading
* densely packsd (i.e. encoded) data, A syntax identicol to that of the write ststement

1oned again and agan in a-"

"'would soem most natural. . But T cmm accept s mm propow like momy'u;

mismatch errors discoverable at run-time only. # seems that there must bs better
approaches to this subject than to adhere blindly to the conventions of the past, §

Many other extensions have been mentioned as needed, convenient, conventional, or
merely desirabie. Most of them, however, beiong 10 a different category which, |
belisve, has nothing to do with the goal of attaining a8 common language. Rather, their
primary objective is o iInlroduce some favourite facility suggested by either a
particular application or, more frequently, an existing operating system. Whareas, |
have no objection to such extensions in principle, they do not belong into the core
language, whose facilities must be understood without reference to any particular
implementation. if at all possible, they should be incorporated in the form of
predefined procedures. functions, types and variables, and in the documentation they
must be clearly marked as facilities pertaining to a given system. There ars 8o many
different kinds of operating system facliities in existence, that an attempt to enforce
any particular set as a standard would be quite detrimental to implementations with
incompatible environment. The version of 8. Knudsen (PN 6, p.33) on indexed files is
an example: aithough it may be usefui on the CDC machines, it would be ridiculous to
enforce this pt on an impl tation for IBM computers.

The four items listed above are frae of such environment dependent considerations.
They migh therefore well be considered -- if properly worked out -- as Standard
Extensions of Pascal. We might publish a final proposal in the Newsletter, thereby
avoiding to have to officially change the definition of Pascal as widely published in the
literature. A set of Stendard Extensiona might encourage implementors to adopt a
common notation.

The remainder of this letter consists of some miscellaneous comments on various
contributions in Newsletter 8. Above all, | enjoyed the Southamplon-Hobart dislogue
and in particyiar Prolessor Sales's yuks and ouches (p.61). | emphatically support his
advice againat private character sets. Two are already too many, but we shall have to
live with ASCli and EBCDIC due to higher torces. it is unfortunate that COC users are

compelied to have an additional one based on 8 bits and strange conventions about -

line ends, and this has considerably hampered -transportation of Pascal.

Filas and input/output are a frequent topic, and this is not surprising. | agree D!’dﬂn
play & special role among Pascal's data siructures, and that it would be unwise to try
to eradicate or hide this special role by. for example, ietting the assignment operptor -

denote the copying of an entire file (p. 81). On the other hand, | disagree with the
strong statement that "Pascal’'s files are an snachronism™ (p.47). The Pascal Raport
specifies clearly that file here means sequential file, and perhaps sequence would
have been a iess misieading term. The concept of a sequence is as little. an
anachronism as is the notion of an integer (which retains its imporlance inspite of the
existence of real and complex numbers). in facl, the sequence has so far proven to
be the only data siructure that is widely accepted and simple enough to describe
much sbout input and output in a macrﬁne-indopondent fashion.” Every other attempt

has remained highly tailored to specific tile systm and proven lo be of littie intersst .
to .‘"’W‘ not oﬂnqm same onvwmou*m,uww Hagerty (mwn L

8# ¥3LLITISKAINTVISV

LL6T AVM

end-of-file”. if not some implementation dependent mark in a sequence of elements, a
mark that may be followed by other elements and is therelore nol the end. It is
important that we distinguish between the end (of a sequence) and a possible way to
represent this end. Let not such confusion penetrate the framework of Pascall An
attempt to define any proposat on new lacilities in terms of an absiract, consistent sat
of axioms is a highly recommended test for its soundness and independence of
implementation particulars. (See Hoare and Wirth: An axiomatic delinition of the
programming language Pascal. Acta Informatica 2, p. 335-3565, 19873).

“Foriran's archaic control character at the start of a printed line” (boltom, p.47) has
never been a part of Pascal's definition. it was merely part of a suggested standard
for program interchange, alluding to the facl that this convention is used wherever
Fortran is aveilable. The Pascal system itself is not even aware of the special
signilicance of the first character.

Another misunderstanding accuses Pascal of being “unsuitable as an interaclive
language”. What. above ali, is an interactive language? A correct statement might be:
“The Pascal 6000-3.4 file system without modifications Is inadequate for use in an
interactive mode”. In fact, the notion of file may wel! be used to represent the
sequence of characters originating at the input terminal. However, at the heart of the
problem lies the fact that interactive use nherently postulates two concurrent
processes, namely the programmer and the programmed computer. Yet Pascal does
not include the notion of concurrency. Nevertheless, the problem can be "solved” in
this particular case in several ways. The most popular ong is to require a readin
statement before the first inpul requeslt, which includes a delay until the next ling
arrives from the terminal.

Finaily, | should like to mention that there exist items where slandardization should not
be considered at all. The form of compiler directives is one of those. They were
intentionally moved into comments, so they could be ignored as such if desired. The
idea of portability is stretched too far, if even compiler directives should carry over
automatically.

Yours sincerely,
Ukbaun ArW

Prof. N. Wirth

c: U. Ammann, ETH

/ DATALOGISK INSTITUT K@BENHAVNS UNIVERSITET
SIGURDSGADE 41, DK-2200 KBBENHAVN, DANMARK, TLF. (01) TA9466

Mr. A. Mickel February 9, 1977

University Computer Center .

227 Exp. Engr. * JSM/HG
University of Minneaota

Minneapoli, MN 55455

USA

Dear Mr. Mickel.

Professor Wirth has asked my opinion with respect to stand-
ardizing some extensions to Pascal. He did that after reading our
Pascal 1100 User Manual and in his reply he mentioned that you
too would be interested. As they may be of interest to others alsoc
I have set up a small paper, which you may include in Pascal News-
letter. Further I enclose for you a copy of our Pascal 1100 User
Mannal.

Yours sincerely

Lb’\“x“* \E, *-\;)S -\.«\ﬂ\ ‘\ e N [
Jgrgen Steensgaard-Madsen

COMMENTS ON PASCAL EXTENSIONS

J. Steensgaard-Madsen
DIKU
Sigurdsgade 41
DK-2200 Copenhagen
Denmark

The programming language Pascal was originally designed
primarily for educational purposes. Its popularity is steadily
growing and it seems natural to consider the language also for
applications. Doing so, a few well-known shortcomings of the
language increase in importance. From the experience gained by
bootstrapping a Pascal compiler to the UNIVAC 1100 machines,
and the extensions of the language built into that compller, [
should like to state my opinion on selected topiecs. These will
be

a. initialization of variables

b. dynamic arrays)

¢. exhaustive specification of parameters

d. the case statement

e. handling of TEXT variables.

8# YILL1ITSHIN TVISYd

AV

L/[61

he 39Vd

Initialigation of variables

Quite often a program depends heavily on tables, the con~
tent of which is a rather complex pattern of elementary values.
With Pascal such tebles are held in variables and the initiali-
zation of these is cumbersome and probably costly.

As a means to overcome this problem a constructor concept
has appenrbd.”A constructor:looks like a function, but general-

1y reaultq»in’q structured -value and‘ncciptl‘conatant paraneters

. only. The name of the function i; identicll to an identifier of
the result’ typo. o - :

I find:the constructor to be on&y‘:*partitl solution to the

initiaslization®problem, but perhaps 1t May beé useful as an ex-'

pression yielding a structured result, i.e. if the parameters

may be expressions. To my taste it requires too much writing

to build a table with structured entries using constructors.

- But more important, it means that any table still must be a var-

w lable, although its value may remain unaltered after initiali-

zation., I ‘thio ‘sase the table, prabgblyawill be represented

twice, one

izing the variubxo.
Now, if yqu provide for the 1dtntiricacion of structured

" constants you have the option of easy initialisation by usual

assignment. This is done in our Pasgal compiler and experience

indicates that structured constants are used more in their own
right than for initialization of variables.

’ We have extended the syntax for constant definition by the

, cal proooduroa. No serious tochnicat prodlems

)

n the variable and once ror‘che purpose of initiale

f;grammer can speoitb Iuch parcn»tcr .,éﬁhtlatennx etn then bc'
checked at compile time. The requirement in Pasoal that forme

ve to be solvodx'

to mend this defect. It almost suffices to define a syntax for "~
the description of array parameters without fixing bounds for
indices. The most suitable way is to eventually replace the i-

dentifier specifying the type of a parameter with a construct
like

<packed> array {<type> {,<type»}) of <type>

Secondly, the fixed-sized representation of values other
than file values is fundamental to ?aacnl, but is felt restric-
tive to users familiar with Algol to whom it is natural to let
the value of an expression determine the size of a table. .

I consider it fruitless to modify the type concept of Pas~
cal in such a way that index bounds may be determined by expres-
sions in general. Alternatively I propose to introduce the con-
cept ‘of an array of variables to be distinct from cne variable,
the type of which is an array structure. The bounds for arrays
of variables may then depend on general expressions. Syntacti-
cally you may declare several arrays of vnriablqu by the rule.

<variable declaration> ::= - ‘ a
<variable identifier> {,<variable identifier>)
[<bounds> {,<bounds>}] : <type> :

<bound> ::x <expression> .. cexpression>

An implementation along these lines is well under way for
our compiler and the additional complexity seems modest. Tho
specification of array parameters is taken as a point of uni-
fication of the two array concepts.

Exhaustive specification of parnmoﬁ.rs 3

The number and typo- of pcrtnotcrl in torunl cnlls or pro-
cedures. nnd function& _¢annot at’ r‘nnqnable costu bc checked - n'

procedures and functicna may be clllad uith value parameters

in oerttin caaot (e.g. hidden: and &ovwﬂtive modules). I do have
very favourable experiences from sctual use but space is too
short for further elaboration here. You may consult our Pasoal

8# ¥31137SKIN TVISV

LL6T AV

1100 User Manual for the syntactic details, but this contains
no important examples.

The case statement

Pascal has often been praised for its case statement. The
explicit labelling of entries makes programs very readable., Nev-
ertheless the Pascal Report does not specify the action when the
case expression does not compute one of the values labelling an
entry. It seems most reasonable to provide the programmer a means
by which to handle this situation and settle for a common inter-
pretation if that is not used.

Further I find it very convenient but not so important to
allow an interval to indicate labelling of an entry. In our com-
piler we have adopted the following syntax

<case statements> ::= N
case <expression»> of
<case list element> {;<case list element>}
<case terminations>
<case list element> :::=
<case labelling> {,<case labelling>} : <statement>
<case labelling> ::=
<constant> | <conatant> .. <constant>
<case termination> ::=
end | otherwise <statement>

The statement following otherwise is executed if none of
the labelled entries are selected. The termination end is equiv-
alent to otherwise <empty>.

Handling of TEXT variables

A format specification in the read procedure in analogy
with the write procedure has been claimed a need. I have no
strong opinion on the subject itself but want to warn against
rushing to a solution. Proper use of the read procedure seems
to be difficult, judged by the number of errors found in begin-
ners programs. The reason to this is, I suppose, the lack of a
suitable standard structure in TEXT variables. This may be ex-
plained by the development history of Pascal, especially the
late addition of a read procedure including type conversion.

I would find it a most unhappy situation to introduce a
standard for formatted input before an agreement on TEXT struc-

ture. This should include a rule stating that the value of eof
only changes when a line marker is passed, in complete agree-
ment with the scheme :

while not eof (f) do begin
while not eoln (f) do begin
read (£, x); use (x)
end;
readln ()
end

Another trouble with reading a TEXT variable is that the above
scheme is only correct if x is a CHAR variable. A closer look
into the problem reveals that the above scheme applies to read-
ing in general, if trailing blanks in a line are skipped during
a read operation. This will be true if x is replaced with sev-
eral variables provided that read (f,Vl,Vz,...,Vn) is consid-
ered a fatal error only if eof (f) is true prior to the call.
With the above structure, format specification may be safe-
ly introduced if interpreted in such a way that detection of a
line marker may shorten a field.
Formatted reading would probably be used mostly to read
a TEXT variable previously written with Pascal output format
specification. Writing may result in a field larger than spec-
ified. This situation ought to be detectable when reading and
a standard structure of' TEXT variables may be a sufficient means
to this.

Concluding remark

e i n s im0

Except for formatted reading my opinions expressed above
are based on actual experience, both my own and a large number
of computer science students. Neither in themselves nor in com~
bination do the presented extensions complicate the compiler
seriously and the additional conceptual complexity is clearly
outweighted by the increased possibilities.

{* Jorgen s not a PUG member yet. *)

S# YILLITSHIN TV¥ISV

AV U

LL6T

9¢Z 39vd

State University of New York
at Stony Brook
Stony Brook, New York 11794

Department of Computer Science
telsphone: (518) 248-7148

StonyBrook

Mazch 7, 1977

Professor Niklsus Wirth
Xerox-Falo Alto Reasearch Center
3333 Coyote Hill Road

Palo Alto, California 94304

Dear Professor Wirth:

I xeceived the copy of your letter on standardization of Pascal
extensions, and read it with much interest. I certainly agrecwith the
general philosophy expressed on standardization and on the role of langusge
extensfons. The concern that you axpresa for keeping the published iiter-
ature up to date with the working versions of the language is also well
taken; no implementor will ordinarily undartake such a responsibility.

My principal concerns on the Standard version of Pascal, as opposed
tq possible axtensions, are two:

A. The complete typing of formal procedurs parameters should have been
standaxdized. The strongtyping inherent in the language fails to
carry over here, leaving to the implementor the choice as to whether
to omit type checking of paramaters in calls upon formal procedure or
function names (unthinkable) or.to compiles run~time checking
nechanism., Several implemsntors have chosen & thixd route--to define
their own syntax for the declaration of the parameter types of formal
procedures. These saveral syntactic devices have in common that they
all permit full type checking during compilation, but they are mutually
incompatible,

B. The field width specifier given in the arguments of a call to the pro-
cedure Write should not have baen made a part of the Standard language
in my view. Although the mechanisa is convenient and easy to use, its
syotax {s not context-fres and it is pot easy to implement unless one
usas recursiva~descent parsing, which allows the use of semantic in-
formation to aid the parsa.

With regard to the recormended set of extensions, it is really important
to look for extensions that work well with the Standard language and work well
with one another. My own prejudices are that one should first add diagnostic
facilties to an implementation of the standard language, then look at
extentions. One obvious extension, consistent with the dasign, is to
relax the implameatation restriction on the maximum cardinality of sst types.
There ave known algorithms for flow- sualysis, for instance in which

g e B e

the ability to handle large sats as bit vectors is crucial to pexforamance.
Next in order, by my prefersnce, would be to add typed, structured constant
declarstions. The lack of a facility to initialize tables is a genuine
weakness. Third would be an external, or separate compilation facility,
with type checking extended across program linkages. ¥Yourth on my list
would be some form of string processing, at least at the level that exists
in ALGOLW, but preferably allowing a variable length specifier in the sub»
string selector. On the recommendad set of extentions that you have
addressed:

(1) Dynamic arrays are greatly ovc{'taud. Yast, dy {c sequential
storags can be provided by implementing internal files as corefilas.
Linked 1lists are convenient and easy to usa to implement stscks and
queues, In any single program, vectors and matrices tend to be all
of the same size, or of a few fixed sizes. In fact, until ons has a
facility to compile program components separately, creating a proce-
dure or module library of relocatable programs, there is really mo
need at all for dynamic arxrays. When a library module is designed
to be incorporated into a variety of applications programs, then
elastic bounds do become somewhat of a necessity. However, a very
minimal degree of 'dynamism' is required, even in library modules.

Each applications program will have a characteristic set of dimen-
sions that its arrays use, and thase dimensions, communicated to the
library module during program linkage, should provide sufficient
elasticity in the bounds of arrays. I would propose that ths critical
dimensions be declared as paramstric constents not known at compile
time, as distinguished from “manifest” constants. Parametric constants
could be used to define subranges, just as are manifest constants. The
only linitations that I know of on the use of parametric subrange types
would be in connection with another possible extension, default clauses
in case lists., Of course, arrays and sets indexed by or based upon an
elastic subrange would have to be doped in an implementation, even
though the constants are defined prior to actual run initfation.

(2) Arxay- aod Record- constructors., If the initialization of tables is
the primary motivation for these constructors, and 1 believe that it
18, thenwhy should they be defined on the right side of an assigament
atatsament, in the statemant body of a block? 1t seems that it would
suffice to define typed, atructured constants in the block heading,
allowing type and const definitions to appear in alternate . order.

I certainly agree that the inclusion of general expressions as construc-
tor elements would be a major, and I think unwarranted extension of
Pascal. The notion of multiple assignment has some attractive aspects,
but this is something to ba built into the foundations of a programming
language, not to be added on.

(3) Default in case lists is only s convanience, a cosmatic exteasions,
but 1t turns out that it 1s & very attractive one. Our students,
who ars currently using the Pascal 1100 compiler from Copenhagen
which has this feature, like it a lot. And we haven’t encouraged
them to use it, they have just found out about it. Since it is one
of the sasiest extensions to maks, perturbing nothing else (until
pacsastric constants ara added, at least) .l ses no objection to it.

(4) TYorxmatted input hes no justification that I caa see. It has a
historical origin in the technology of fixed~field, unit-~record data
processing. Far more useful in some ‘large-program applications would
be the.ability to spacify, in a machine-dependent way, the format of
data packing in the declaration of a packed record. This would be a
rather specialized extansion, but is worthy of some serious thought.

g# ¥3IL13T1SMIN TVISV

LLBT “AVM

LT 39Vd

In our implementation, we have first concentrated on providing some
useful disgnostics, borrowed with much admiration from Ed Satterthwaite's
contributica to the ALGOLW compiler, and on a relatively clean implementation
that can be built upon and maintained. Wa have given a lot of thought to
genarating efficient code, and have provided hooks for optimization, but
have deferrsd work on an optimizer until we feel that most of the compiler
buge have appeared and been eradicated. We are just now completing the
izplementation of nonstandard files. An efficient and safe storage manage—
ment scheme 1s our next target, and doesn't appeax to be too difficult. We
are prasantly working ou two actual extensions, separate compilation with
type—checking scross wmodule linkages, and the addition of typed, structured
constants. Incidentally, we adopted your suggestions for the syntax of
record and array constructors. Some of this may be working by the time of
your visit.

We have thought:about adding a default case clause, and allowing ranges
to specify case ladels, but I'm not sure this will get dons. Also, we have
thought about allowing parametric constante, but no decision has yet bean
sada on whathar to go ahead with an implementation of this idea, either,

One final comment on the use of Pascal in writing programs for inter-
active execution is that the expedient adopted in the Copenhagen Pascal/1100
seems worthwhile. They have made tha nonstandard implementation adaptation
that vhen a Text file is opened, or Resst, the Eoln condition is initially
true. This means that to accept input, one may nead to execute an initial
call to Readln, but it avoids the condition that input from a terminal is
expected prior to printing of the first prompting line of output. Thus it
vorks very nicely in interactive programs.

I look forward to an in-depth discussion with you at the time of your
~visit on March 23, until thea.

—

eburtsz i

Richard B.
Professor

RBK:pdm

Third Annua! Computer Studies Symposium .
“PASCAL - the LANGUAGE and its IMPLEMENTATION
University of Southampton, March 1977

THE FUTURE OF PASCAL (Extensions and Standardization)
Andrew B. Mickel

University Computer Center
Untversity of Minnesota

The Present State of Affairs

1.

2.

o o~

It's been 7 years since Pascal's initial development, but only 3 years since Pascal
has seen widespread use and easy to obtain 1iterature (books) has been available.
We have 3 official documents: .

- the Revised Report (Second Edition, Third Printing of the book: Pascal User

Manual and Report)

- the Axiomatic Definftfon (in Acta Informatica, 1973)

- the User Manual

Now in early 1977 we have working implementations on dozens of different machines,

thousands of users, an ever-increasing base of computer science departments which

are using Pascal for teaching, and a rapidly growing user's group of more than 800

members in 28 countries.

Pascal has had an enormous effect on computer science - just witness the imitations

of features in the literature and in conference papers.

Much applications and production software is being written in Pascal at all levels:

from individuals, to small software writing firms, to large organizations (research

computer centers and corporations.)

No major computer manufacturer has yet officfally produced and supported a Pascal

system for general user applications.

We therefore can proclaim a fair measure of success. But...

Even though we have a “standard” in the official documents, many implementors are

not adhering closely to ft. There are at least these reasons:

- most implementations so far are done at universities and it {s their purpose to
experiment with new things: some valid, some “bright ideas."

- most Pascal compilers are written in Pascal and are very transparent and compact
which allows easy modification.

- there are lots of questions about details not specified in the 3 official documents
but which are left up to the implementation to decide what to do. This aspect has
Ted to accusations against Pascal such as CDC bias, requiring a look at the CDC
compiler to see how it did things (things defined by implementation), and whom to
ask to find out about other aspects.

The result is bad not only for users of these Pascal implementations, but also for

the implementor and the future of Pascal if it is to spread in the world's computing

8# ¥3L13TISHIN TVISV

‘AVW

LL61

€C 39Vvd

10.

n.

community. Increased acceptance of Pascal helps each Pascal programmer to be able
to use Pascal respectably.

Within the Pascal community (PUG'in particular) we have some of the best people in
computing in the world today. They naturally tend to strive for excellence and
would like to see the looseness tightened; the vagueness clarified.

Thus the issue of an officially accepted standard for Pascal is raised which
supposedly should help the situation.

Desirable Goals and Current Problems

1.

4.

Let's consider the original design goals of Pascal:

- sparse, simple language (easy to learn/efficient to translate)

- general purpose language (but not all-purpose)

- vehicle for portable software (certainly better than FORTRAN)

- tool for systematic programming (teaching and writing reliable software)

- efficient realization (for sheer practicality)

What roles should Pascal play?

- an as-low-as-you-want-to-go high-level language forming a basis for much other
software

- help put an end to the FORTRAN age so that young new programmers won't be faced

with a life sentence of writing ugly code because of “practical realities.* Using

Pascal should be a respectable activity.

- to be an alternative to dinosaur languages. Consider how hard it is.to get a
common medium such g4s Pascal widely established. There's not much hope for
another language to come along ff Pascal (even with its small, imperfections)
doesn 't make it, Computer manufacturers will continue to control users' lives by

pushing FORTRAN, COBOL, and PL/I with the excuse “that's what the customers want,"

It 1s wise to stay within these assumptions (upon which much of Pascal's current
viability 1ies), and try to understand how to satisfy all the design goals to the
greatest degree without holding any single one to an extreme degree.

Within Pascal User's Group, many persons are quite concerned that Pascal will fly

apart, be killed, or become just as bad as other Janguages without adherence to a

standard.

But there {s also pressure to use the movement for a standard to extend Pascal ot

the same time. This is bad because:

- most importantly, there is a current {nvestment in documentation in the form of
defining docmn/ts. manuals, and books; implementations which are currently
op.ratioml. and @ gglication softwam. Ve are dlnm in c‘nnt. and it _is too
~late o add extensions to the official language. ' . °

- the sfze of the langusge as described in the Reviud leport is already large
enough 1n terms of learning the whole language in & reasonable time and in writing

_ complete implemantatfons on small (mini/micro) computers. The importance of small

computers cannot be overlooked because of their ever increasing numbers and use
by more and more people.

- a committee, which would have to effect a standard,cannot possibly possess the
clarity of vision of a single designer who alone considers design goals and
tradeoffs,

There is much difficulty in obtaining an officially accepted standard by a standards

organization. For example, I am told that ANSI requires a committee. Who would

choose it, how will it meet, what will its powers be, and how binding will be its
decisions?

The basic problems with the three official documents seem to be semantic holes

(Swiss cheese?). On the other hand their outstanding virtue is small size. The

Revised Report requires reading between the lines, the Axiomatic Definition goes as

far as it can but is not complete, and the User Manual is not a rigorous source for

semantics and shouldn't be. The problems are vagueness and uncertainty. The
situation might be better today if i) it had been explfcitly spelled out what
features were left out from Pascal and why, and if ii) it had been explicitly

stated which unspecified details in the Report were left up to the implementation to

define and suggest valid alternatives. We would then know where we stand as users

and implementors, and be saved from the archeological digging of trying to find
these things out.

Considerations of a Standard

The case 1s now made for:

- standardizing the Revised Report with semantics tightened up,

- conventionalizing extensions to the standard which apply to any implementations
incorporating them, (The User's Group and Pascal Newsletter can be the forum.)

- stating examples of extensions which should not be conventionized.

The advantages of an officially accepted (IS0, ANSI, etc.)standard are:

- If most people involved with Pascal adhere to 1t, it will become a 11ving standard
and there will be peer pressure (political enforcement) brought to bear against
others. Therefore users can point to implementations masquerading under the name
Pascal and avoid them, At the present time it would seem that the Revised Report
would be such a standard, except for the fact that so many influential Pascalers
find it hard to defend mostly because of semantic holes.

- Portable software possibilities are enhanced, and users are happy.

- It will increase acceptance of Pascal by large organizations because Pascal will
appear to be a legitimate option to take for writing software.

- 1t will be economically enforceable 1n the marketplace. If a large customer (say’
the United States Government) wants an ANSI-standard Pascal in the manufacturer's
array of software, it will be there.

Some extensions should be conventionalized and others should not. Many

8# ¥ILLITSMIN VISV

‘AVH

L6

6C 39Vd

5.

6.

implementations do provide desirable extensions, some of which enhance Pascal's
utility. It is possible to make these uniform across computer systems because they
meet many of Pascal's design goals. The spirit of conventionalized extensions {s:
“4f an implementation extends in a certain direction, it should do it this way."
On the other hand, many extensions should not be conventionalized because they are
so machine and operating system dependent as to conflict severely with design goals
(mainly efficiency).
An incomplete list of details that seem to need attention regarding the Revised
Report:
- the symbol ".." {s a Pascal symbol in the User Manual, but not in the Report
- sets of char are not necessarily guaranteed, but in practice seem to be a useful
guide for minimum set size.
= what 1s meant by the concept of same type?
a) explicitly same type identifier? or
b) same structure?
- are compound boolean expressions evaluated fully or sequentially left to right
allowing partial evaluation? (specified in the Manual but not in the Report)
what should be the undefined values of scalars and pointers? (nil for pointers
will not necessarily suffice.)
- what {s the effect of a case value out of range?
- what is the effect of unset tag fields in variant records?
Candidates for conventionalized extensions:
- variable extent array parameters
- constructors for structured constants
- specification of all parameters and their types for procedures and functions as
formal parameters.
a data initfalization facility (value part)
formatted read procedure
reading and writing enumerated scalar values
- the procedure dispose
- external procedures and functions (whether precompiled or in source form)
- {nteractive input/output
- otherwise for case statements
Examples of extensions which should not be conventionalized across implementations:
- operating system file substructures, their access methods, and their myriad
attributes {including direct azcess secondary storage)
- additional, predefined constants, types, variables, functions, and procedures
- compiler options
- very specialized extensions (significant digit arithmetic, error trap labels,
extra looping control structures, synonyms for standard Pascal symbols, etc.)

4

Manchester University

oxford RoAd

Manchester

7th April 1977 (elLate 8t night)
Deapr Andy

Please Tind enclosed an attention List,which refers to the
Revised Report,for you to put in newsletter #8 and ultimately to
pass on to NiklLaus yirth.Many of the points may seem trivial,but
1 am trying to prevent problems Later.

1 have had no time prior to Easter to take any action:.on
standardising pascal in the yK ,apart from generating this List.
This List includes contributions from others.iwill be sending you
a copy of a Letter which Brian wichmann has sent me on this matter.
some of the items on this List are due to Brian.

This Letter will have to be brief,since I am trying to type
it myself on an online terminal(offline)lAs well as the List!!

I will be putting a cage at the next meeting of Dps/13, (the
Bpritish standards committee dealing with programming lLanguages)
for the produotion of an official standaprd for pascal.This may be
either a UK standard or &n }80 standaprd.if this cage is acceptad
then 1 can form & working group to stud¥ the problem and pps/13
will apply to a sugerinr committee for facilities for the work.
1t i3 the responsibiLity of this committee(DPs/-/1) to initiate new
work.The working group will be OK,since it wont need BSI resources.

The working group (roughly equivalent to X3J1-4's iIn ANSI)
will have two main tasks,

1.To critically examine the current Revised Report and

submit their results to Nikiaus wirth (via you).
2.TO0 ensure that any document(s) resutting from your work
will be acceptable as standards documents.t! dont want TwO
standapds for Pascal.
The WG witl have the pesponsibility for producing a draft standard
ag far as the standards organisations are concerned.

some thoughts on standaprds. .

1. In additgon to the standards document for standapd pascat,

we nee 2l

a)A definition of acceptable alternative representations
of the pascal special symbols e.g. t [}

b)A suite of programs to valldate Pascal compilers
tor conformance with the standard.

2. Hepe 1s a possible definition of a standard conforming

processor.(processor = compiler + pun time support or

interpreter etc.)

A standard conforming processor must correctly process atl

standard conforming Pascal programs.in addition ,1it must be

able to determine whether or not it's input is a standapd
conforming program.This hasg implications for extensions.

A processor must be able to monitor the use of ani

non-gtandard facilities or semantics.This monitoring could be

optiomal.This also implies that the standard must not forbid
anything that cannot be(easily) checked for.
It anyone in the UK is wilting to assist in the production of the
at;ention List and/or join in the WG , would they please contact
me

Yours , Tony Addyman.

—

[

8# ¥IL13ITSMIN TVISYd

LL6T "AVMW

0¢ 39vd

chapter
3

4
6.1.2

6.2.3
6.2.4

6.3
T7.2.1

8and8. 1

8.1
8.1.4

Ail ATTENTION LIST (PART 1 7)

.o @s @ speclal szmboL? 9.1.1
focward as a special symbol ? (see 10)
Strings are constants of PACKED arrays of char - byt
see also 8.1.4 and 12.3.8
a) ordinal values of type char - digits are coherent?
. Letters & digits are ordered?
b) using 1sO or simitarly full chapacter sats,are the
cgntrot chapacters e.g. FF,CR etC. members of the type
char?
It yes - do they have & constant representation?
- g LF (the end of Line marker) to be a member
of the type char? - see 6.2.4 and 12
- are they to be alLlL converted to spaces on input?
Including the one chogsen to be EGF marker?
NOT REAL 1 Intpoduce ths concept of the Associated scalap
Type from the user Manual.
packed hags no effect on the meaning - but see 8.1.4,9.1.1,
9.1'.2 am 12-3.5
Restrict index type to scalar(except REAL)
Add "A record type containing variants may hold the valus
of only one variant at any time".This is a (poor) attempt
to say something about the storage of variants,and
whether they overLa{.
SET (F REAL 7 see also the comments on set opsrators and
type equivaLence. 9
Are Tile components allowed to contain pointer values?
1t so, 1s this sensibte?
TYPE PT = tTEXT ; 7?7
pointer equality tests are allowed - but see 8.1.4
The meaning of a program with an index expression out-of-
range?This should be JLLEGAL not UNDEFINED.
Note - some people think packed arrays are not indexable.
what is the meaning of pt ,if P 1s undefined or NIL?
Could this be an ILLEGAL program,please?
The meaning of {X..Y] if X > Y ? - gsee yM-~8
can we deduce the base type of a <set> from the types of
its elements? If so,then [1,2] is of ¢type SET OF INTEGER.
The values 1 and 2 are constants of ‘type integer - see 4
Add comments on integer arithmetic and KAXINT from uUM-2C
Add comments on boolean expression evaluation from uM-4A
Introduce the concept of Associated scalap Type from UM-5B
Operations between sets and the use of IN ; consider :-
TYPE S1 = SET OF ‘'A’..'Z'; s2 = SET OF '0'..'9';
VAR LETTERS ¢ 81 3 DIGITS : S2 ; CH ¢ CHAR;

IF CH IN LETTERS+DIGITS THEN coees

is this L:gat?uo 1 = the types anre incompatible.rthe definition
of sets and set operators must be phraged to make thls Legal.
MOD and DIv on integer subrenges? ’
Equality on pointers? - see 6.3

Operations on (packed) arrays of chap -~ see 4 stc.

1f no

9.2.2

9.2.3.3

9.2.4

when are two types identical? If same type identifier
then see the set example etc. If same "structure" then
consider these :-
Assuming
TYPE A1 = ARRAY[1..10] OF INTEGER;
ARRAY[1..10] oF 1..100;
RECORD A : CHAR; P : tR1 END;
RECORD B : CHAR: Q : 1R2 END;
REGORD F : TEXT ENDj
VAR A A1; B : A2; C : A3; D : R1; E : R2;
FoG 2 R3; H: 5..10; J 1 3..8;
congider A := B; B := C; D ¢t= E; F := G; H 1= J;
Note - FitLe assignment is not prohibited (yet)
- Assignment between variables of different subranges
of the same type is not explicity allowed.
A program which assigns an out-of prange value to a scalap
or subrange variable should be ILLEGAL. .
what about the assigmment restrictions from yM~10(page 64)7
These need run~time checks.ls a compile time pestriction
possible? 5
The order of evaluation of <yvapiable> and the <expression>
should be UNDEFINED.Why should side-effects from a function
have a defined ettect? ’
Do expressions of type subrange of integer exist?
The assigmment rules must apply to vatue papameters.How about
VAR paprameters? File parameters by value prohibited?
GOTO into a structured statement - OK?It must be prohibited.
it merely undefined ,a program which comfiLes successfully
and is prun with atl checking on can still go "wild"!
cage Label types? scalap(not REAL)?
<cage Label> ::= <congtant> 7
Action on case expression out of range?Could this be either
a) the empty sgatement cf ALGOL 60 or b) ILLEGAL? '
A non-Local vapiable ag a control yariable?
The semantics in 9.2.3.3 do not cover
FOR | t= 2 TO 1 DD §;
The value of the control vapiable ghould be undéfined on exit,
see UM-4C3.This suggests posltive action to store an
*unpleagant” value in the control vapriable - GOOD!
Consider UM-4C3,if the fimal value is calcuylated once only
it 1s impossible to change 1t,s0 why prohibit any attempt
to do so7Assigmment to the control variable should be
iltegal - but how to check for 1t? (Non-lLocal references from
procedures), Is the order of evaluatlon of 21 and e2 undafined?
The effect of nested yiTH statements? - see UM-T7A.
WITH A,B DO = yITH A DO WITH B DO .
why prohibit the alteration of 1 in wiTH A[{1] DO 71¢ 1s
very difficult to check.Could the yITH statement be defined
to evalyate its <record variable List> just once?!t would
~(then ge1czor;\patibl.e with vAR-parameters and the FOR Loop.
see 9.1, '

k)
-t
Tt NS

8# ¥ILL1ITSKIN TVISY

LL6T AVMW

T¢€ 39Vd

Chapter
10

10.1.1

10.1.2
11

11.1.3
11.1.4

12

The rules of scope and the accessing of non-Local variables
and types etc. are not adequately defined.(see yM introduction:
and uM-11A).There is NO mention of defining before using!!!
S0 congider these :-
TYPE A = RECORD etc.
PROCEDURE +..
© TYPE PA = t1A;

A = RECORD (® DIFFERENT ¢) etc.
which type A do variables of type PA point to??
PROGRAM ...

PROCEDURE P(...)
PROCEDURE Q(.ee)

: P(...) (» but which one 7 »)

END

PROCEDURE P{..s)

END

END

END.
which procedure doss @ call?The rules of scope suggest the
second one.
Is agsigmment to Tt allowed if one is reading from f?
ts put(t) atlLowed on file * 1f eof(f) ig true because of
reading to the end of the file,without calling rewrite(f)?
is skggbLanks (see UM-12A) Legal?
Has dispose definitely been down-graded to a pre-defined but
not standard procedure?
vhat is the effect if no assignments occur dynamically inside
the function to the function identifier?An undefined valLue is
returned?
pefinition of trunc and round should be taken:from uUM-28B.
PlLease define ord{user defined scatar) to start from O.
what is the effect of pred(i), if 1 = 1 and var 1:1..10?
1t should produce 0 without error since pred(in«this case)
produces an integer value.But what about pred and succ on
user defined scalars?should it be a fault?
ts reading @ subrange variablLe subject to the same conditions
ag assignment?what do read(integer) and read(real) do if eof
is true before read 1s called?How about returning an undefined
("urpleasant™) vatue?
Action if n = 0? compare this section with uM-1287 and uM-1233
see 4 and B8.1.4
This must remain as a program interchange conglderation only.
implementations of pagcal should not have to 'know' about this
if their operating systems do not believe in 1t.

|
!
|
i
|

3 “ UNIVERSITY OF MINNESOTA university Computer Conter
A ' TWIN CITIES 227 Experimantat Engineering Building
| Minneapotis, Minnesota 5545‘5

(612) 373.4360
§

April 24, 1977

Tony Addyman
Department of Computer Science
University of Manchaster

Dear Tony,

Thank you for going to the trouble of making the list of potential
problems in the ravised report. 1I's impressed at the thoroughness evident in
your list. I'm printing the list as sn example, and what I will do is collect
those sent to me by others, sort and combine them and then send them on to
Niklaus as he and I agreed. We want to get most of this done by September.

Please don't forget the principle we learned as of Newsletter #5 (Wirth's
letter): don't confuse the language vith the implementation. Also remember
that because the revised report is concernsd with the language only, aome
aspects of Pascal arg intentionally left undefined to ba defined by the
implementation. But there definitely should be & list of specific aspects to
be defined by implementation accompanying the revised report, rather than a
vague implication by omission.

Omissions in the revised report right nov can mean:
1) the aspect in question is undefined,
2) the aspect in question is to be defined by implementation, or
3) the aspect was not given consideration and the revised report
therefore has as error.

OK, so I (for example) don't think that including 6.3 in your list is a
valid complaint. The language doesn't prevent pointers to files, files of files,
etc. and it shouldn’t. An implementation (with today's technology) may have to
restrict thess possibilities.

I know you are going ahead with standardizing via IS0O; it will certainly
be a far sight better than even touchiang ANSI. I've just found out more details
on the BASIC Standard and it was very disappointing to nearly everyone 1 talked
to. Thers ware a lot of 8-7 votes (some going the "wrong" way) in a 15 person
committes. And the whole affort will be measured in uanite of years. So, I
emphasize again that committees are a disaster, and the one you need for BSY
and ISO is only for review as you promised. In other words your working group
is not to twiddle with the language. You did say when I was in England that
there vere precedents within ISO for creating standards without committees.
That is the only sccaptabls route for Pascal at this point. I want to be able
to trust you. I hope you will do your best.

Keep suiling,

B# Y3ILLITSMIN TVISV

LL6T “AVH

¢¢ 39YVd

ABK FOR

o)

The University of Tasmania

Postal Address: Box 252C, G.P.0., Hobart, Tasmania, Australia 7001
Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

IN REPLY PLEABE QUOTE:

DEPARTMENT OF |NFORMATION SCIENCE

FILE NO.

IF TELEPHONING OR CALLING

28th January, 1977.

Mr. Andy Mickel,

University Computer Center,

227 Experimental Englineering Bullding,
MINNEAPOLIS, Minnesota 55455 USA.

Dear Andy,

Please find enclosed a contribution for the PASCAL Newsletter In some future
I ssue. It addresses the flile question; quite a serious one for PASCAL. 1f i
can reiterate something | wrote In it to emphasize It to you, | believe that
PASCAL has more to fear from its friends than its enemles.

1'd also 1ike to briefly comment on your editorial In #6 where you said you
couldn't understand my views on page 2. ft is very hard to say all that one
would like to when writing Is all that is possible across several 1000's of kms.
What my attitudes are briefly are as follows:

(1) Adhere to standard PASCAL where this is well-defined in the Report or
where a portabllity trend can be clearly perceived. Unfortunately the
Revised Report Is hopeless as a standards document (much too loose, and
dumb on many semantic Issues), and PASCAL is inadequate in some areas.

(2) Where there is a gap In PASCAL, or an unsupportably bad feature, then if
the gap has to be filled it should be with (a) maximum compatibillity
with PASCAL aims and style, and (b) maximum compatibility with Burroughs
practice. Somewhare a compromise; though often the two agree. The
sort of thing | have in mind is In the specification of file attributes
(none In PASCAL), or compllier options (too terse and clumsy In Wirth's
PASCAL), or extended standard functlons (even Wirth has & larger set than
the Revised Report).

| could wesp over some of the things PASCAL has In fact carried over from
the past (Its silly semicolon structurs for exsmple), but no-ons can do snything
about them now, | wouldn't bother trying, axcept to point out the mess, and
apply & bit of plaster in our Implementation to ease the problem.

| wouldn't think this covering letter Is worth including In the newsletter
(1 don't feel too slighted), but you may if you wish.

Yours sincerely, @/

Arthur Sale
Professor of Information Science.

PASCAL files
In MPASCAL Newsletter #6, I made some remarks concerning the inadeguacy of
the PASCAL file concept. Provocetive, perhaps, because 1 have drawn a8 number
of letters defending PASCAL and suggesting extensions to it. In fact,
Newsletters #5 and #6 also had comments by other people pointing out possible
extensions to PASCAL in this area. I think the topic is so important,
Jjudging from the interest and the many suggested remedies, that it deserves
a brief comment in the Newsletter. So here goes.

(1) Are PASCAL's files inadequate?
That depends, of course, on how you interpret inadegquate: inedequate for what?

I put the question in terms of the use of PASCAL for systems programming, and
as a possible user-programmer language (the FORTRAN replacement role). I would
have thought the answer was quite clearly no; for instance I could not write
an analyser in PASCAL to inspect the code-files of the B6700 computer (that
requires random-access), nor to scan a disk directory; it would be unbearably
cumbersome to carry out any conversation with en interactive terminal as

the riscourse would have to be carried out at the read(char) level....

Some of my correspondents disagreed, and thought PASCAL's flles were just fine;
a sequence of elements wes all they needed. If 8o, fine, 1t can be encugh

for teaching and some applications. However, in nearly all cases they gave
themselves away subconsclously by proposing far-reaching changes to PASCAL
which would go far outside the current language. Often theee were disguised
as innocuous extenalone: let files be treeted am full PASCAL types.... No,
it is widely recognized thet the files of PASCAL, though quite adequate and
regular for @ teaching environment (the design terget of PASCAL) are not

fully up to the reslity of the computing world.

(2) Are files varlables?
I have argued that files are not variables in the same senses as scalars,

sets, records and arrays, and that it would have been better for PASCAL had
the declaration of file objects been separeted from that of VAR objects, just
as CONST and LABEL are. I shall have to Justify this view later, though

it is by now imposeible to make such @ change in the language.

This view {8 the ane to which most people take umbrage, wnd they usumlly
stute that flles are variables, with equal ststus with other variable types,

g# ¥3ILL13ITSMIX 1VISVd

‘AVHR

LL61

£¢ 39Vd

following this up with exsamples of how files may be used in PASCAL as full
variable typms, To quots from one letter:
* a) "rilel := file2" should specify a file copy.

b) An array of files could be an array of (pointers to?) file
descriptors in main atorsge.

c) "file1 < file2" is just as meaningful as "array1 < array2" or
"icat! ¢ 'dog'" and could be implemented as a emall (albeit
time-consuming) loop.)

d) The scope of files could be the same as the scope of variables
(procedure entry and exit). Of course & file declared as a
formal paremeter tc a main program should exist (or be created)
before execution end after termination.”

I would not attempt to argue that the above could not be done; I could
easily see how to do theee things myeelf. The mind of man is guite capable
of thinking up a meaning for any construct. No, my quarrel is that these
views are very superficiel. Far the saske of one regularity (treating

files me full variables) they would import into PASCAL a whole host of other
second- and third-order irregularities. Let me remark that the ideas

I have qunted above. must have occurred to every serious PASCALler; they
must have occurred to Wirth; surely it is significant that the Revised
Report is sc quiet on this subject? Let me try to show some of the

flaws in the reasoning.

(s) Is "filet := file?" sensible? The first problem is that some files

are read-only (8 card-reader?) and cannot be essigned to. Also some files
are not of finite length (a file equivalent to a remote-terminal for example)
and the copying might be infinite. Then there is the prablem of the initial
and final states of the two files. Suppose file?t and file2 have something on
them slready. Does the stetement imply & reset and rewrite followed by the
copy? And how are the files left? poeitioned at eof, or closed, or
reset/rewrite called?

(b) Is "filel ¢ file2" sensible? Much the same things could be said.
It is easy to define the ordering if the files are of different length,

but what if they are empty (never written to) or never opened? In what
state are they and their file buffers left? Since some things are
inherently not ordered (sets, records), only some files could be compared.
What to do if the file components were records with variants? This

is regularity?

(c) Is an array of files sensible? Sure, one cen have an arrsy of files,
and m record with @ file component. It is emsy to ses the logical
consequences heres they leed from allowing files as structuring components
of arraye and records, to allowing files as value parameters, probably
even to allowing records, arrays and flles to be function reeult types,
and finally to the ultimate absurdity: allowing files of files.
Remember that eny operatlion involving files and file assignment must
cause a copy of the whole file; it is not eufficient to copy the
descriptor. Even more so must it be the case that writing file-descriptors

to a file will lead to chaos as time elapses and some of the objects
described vanish and others chenge...

I will say it egain: the confusion arises because files are something
outside a program in execution: their 1ifetime (or extent, to use e
technical term) is not identicsl to their scope.

(d) What about scope? If one views the scope of a file-name ae the region in
which 1t is known, then there msre no problems about associating the
scope of a flle-name with the scope of the program/procedure/function
in which it is declared. This im exactly the interpretation in B&700
PASCAL with the additional semantic interpretation that at procedure exit
all files still open in that scope are implicitly closed, with the
consequent side-effacts.

It is silly to claim the progrem heading of PASCAL as a sclution to this
problem. A little femilisrity with COC computers reveals it as a
kludge, and an importation from COC FORTRAN, The "parameters" in

the program heading are not PASCAL parameters. Though this would be
preferable, and would remove the irregulerity of the program heading
iteelf, i1t would not solve the problem since 1t does not address it
adequately. (Quite as a side-issue, why cannot main-programs be
procedures, thereby allowing them to be called as things with genuine
perameters? Any answera?)

Come back and look at lifetime. What sorts of files are there? Some
have 1ifetimes which precede the program's life in execution and continue
past it. Some permanent files for example on disk, some tape flles,

a remote terminal file, and so on. Others do not exist before the
program starts executlon, but exist after it: a disk file written by

the program for example. vet others exist before the program atarts

g# ¥3113ITSMIN VISV

AV

LL6T

he 39Vd

execution but not after it (as in an archiving program's ususl handling).
Some only exist during the program's lifetime and are quite temporary.

And others, for example print-files, are created during the program's
execution and are then deteched at the point of closure, to live on for

8 brief time (inaccessible to the program again) until they are printed.
Surely 1lifetime and scope of files are orthogonal concepts? If they are not,
then we get all sorts of difficult and really messy problems. Let me detail
a few.

(1) Suppose I have @ compiler, written in PASCAL, and it needs provision
to talk to an interactive terminal user who is using 1t to compile
something. Fine, you say, the rempte terminal is an external file
imported into the program. Declare it in the program heading.

Yes, but this compiler is also used in gueue (batch) situations.
Though it knows of this file, 1t never usee it in these situations,

80 it never opens it, so it never exists for it. Declaration in the
program heeding might send ue on a frultless search for a non-existent
file we were never going to asccess...

(11) Suppose again I have & program writing a file. During the course
of execution, it knows that the file it is writing ia rubbish because
errars have occurred. It doesn't went to enter it into the
permanent directory., But 1f its ok, it does. How? In existing
PASCAL?

I can keep on golng, T hope theee ere enpugh examples to get you to supply
some more of your own which highlight the di Fference between scope and
extent. A file ought to be an object whose 1lifetime is controlled (if at
all) by explicit program commands, but uhose\name is known in a given
scope.

(3) Ie the best way to rendom access through slow arrsy of...?
A key question, if you eccept the importance of being able to randomly

accesn files at ell, The enswer must be no, however, for exactly tha eame
reason that sequential files are not slow srrasy of (char?). Both entities
are not varisbles in the same aense 88 the rest of PASCAL, and both entities
may be of unknown size at the program's compile-time.

Note, I am not saying that # slow prefix, like packed in that it cen be

ignored by an implementor, ie not useful. It could be very useful, particularly
in computers with multi-level memoriei such as CDC'a ECS, to be able to

declere mn array s slow. The E111ott 503 of long ago did this very successfully
in its Algol. Whet I am saying is thet a slow @rray is not a rendom access

file. Far from it.

No, @ random-access file may be one written by a program which does not know
its length until it has been written; for example the generated code file
af the 06700 PASCAL. Largely this is written seguentially, tul it 18 tree-
struclured internally and the compiler needs to meke some random accesses
to patch up pleces of 1t., Even more so, a program which accesses an already
written random-access file may nat know its length. Random accessing a
file is a property of the access, not of the file. 86700's have files
which may be accessed either sequentially or randomly as you chonse (if
it is a disk file of course). My suggestion for this is to attach the
random access key to the read and write statements, or as Wirth suggests
for CDC segmented files, to versions of reset and rewrite. Possibly with
an sarray-connotation syntax:

seek(File1findex])
or seek(Filet, index)

(#) What relstion is there between PASCAL files and our operating system files?

It is possible to argue thet current operating systems support things

they call 'files! which are often & mess, and that PASCAL files should have

no truck with any of this mess. This is a defensible argument, and I cannot
argue agalnst it. If accepted however, it has the effect of relegating

PAGCAL Lo the role of an academic language = having on effect on traching

and the future evolution of languages but none on the real world out there,

The fucte ore thet resl-world tiles exist; thelr facititles cannot te completely
ignored except at the cost of making the languege irrelevant to systems and
applicetions programmers. Some of you may be satisfied with that, but I em

nat.

what we need rather is to assimilste what 1® good in real file structure

into a pseudo-standard: & document describing preferred extenslons to PASCAL.
Then implementors would have some idea of what might be a recognized
extension compatlble with same people, rather then the mixture of suggestions
that have been put to me.

SUMMARY
PASCAL has much more to fear from its friends than its enemies. Its tuwo

grestest dangers are from naive extensions and PASCAL-fanaticism. The language
has defects; it has strengths. Let's be ® bit mare ceutious.

I'd alao like everyone thinking about files in PASCAL to mak themaelves
which of the following sorts of files they are thinking about:

magnetic tape files,

ik F1len,

g# ¥31137SKIN TVISVd

LL6T ‘AYMW

S¢ 39Vvd

printer epool files,

directly attached printers,

files attached to interactive terminals,

card reader files,

and @=o on.
I am interested of course in the purpose and lifetime activities of such file
types, not whether they actually reside on e spinning magnetic thing of
21 surfaces or whatever... The differences in activities are still surprizingly
large, and important.

And finally, let me exhort all implementors and users to regard the atandard
usage of PASCAL files as being limited to their declaration as types and
corresponding var objects; their use es var pasrameters to procedures and
functions; and their use with the file buffer and the 1/0 procedures.

Further, the scope of a file name should be regarded as the acope of its
neme alone. The guestion of its lifetime is regrettably one thet standerd

Al

Prof Arthur Sale
Department of Information Science

PASCAL does not address.adequately.

University of Taemanle
Hobart, Tasmania 7001

POSTSCRIPT

AN INVITATION TO USERS AND IMPLEMENTORS
This is an invitation to users and implementors of the many PASCALs there

are around (though I have little faith in the response sbility of implementors)
to write to me to say what their PASCAL compiler sctually does implement
with respect to files. Does it permit file mssigmment? filles as procedure

parameters? files of arrays? arrays of files? If I receive anything, and
if it permits of a sumary, I'1l try to write one for a future newsletter.
The Revised Report is hardly a guide at all in this area.

Department of Information Science
1977 February 14

LETTER TO THE EDITOR,
P.U.G.N.

Dear Andy,
Three criticisms, | regret to say.

1. PUGN _DISTRIBUTION

| understand that you have declded to post overseas subscribers thelr
newsletters by surface mail (other than USA and UK). 1 protfest wigourously.
Do you realize that with all the ships involved thls means | get the
newsletter about 3 months after It has been published? Only by courtesy

of Judy Mullins have | recelved a copy of newsletter #7 yet, and when my
own copy finally arrives it will be far too late to comment on anything In
It, or Indeed to carry out any meaningful correspondence. Alrmall is a

must for post to Tasmania.

2, EDITORIAL SNIPING
In your editorial in Newsletter #7, you took me to task for 'wholeSALE

bending of PASCAL" and reminded me of an implementor's responsibility to

the user community. May | say that | was surprised since | have not indulged
In such destructive bending, nor do | think PASCAL will bridge Burroughs

users onto other machines. However, what | should especlally like to

point out to you Is that if you are golng to object to something, you ought to
be specific in your objections. | have no reply at the moment, except to

think that you have confused language criticism and Insights with Implementation
Intent or fact (on & document which has now served its purpose), or to think
you place an Inflated worth on some very minor points.

If 1 may, I'l] make two points to iilustrate. The first relates to the
responsibility of implementors to the user community. 1| am well aware of this
rasponsibility, and indeed one of the aims of the B6700/87700 compller is to

be a more searching test of ''standards-compatibllity'' than the CDC compiler

8# 43ILLITISMIN TVISV

‘AVH

LL61

9¢ 39Vvd

for example. | greatly regret that the existing PASCAL user-community does
not have much of a clue about standardization; most seem to think that the
COC compi ler defines the standard! There are a number of other important
goals too; | intend this to be much more than the usual PASCAL 'toy’ compller.

You make one good point {which | think you cannot have meant). Why not
stick to Burroughs Algol? | could say why not stick to FORTRAN too, but
you'd probably object to that. In fact, | believe PASCAL'S ecological
viabllity when compared to Burroughs Algol or standard FORTRAN Is very
dublous at the moment, but 1'l1l treat of that later. The important thing

to realize Is that Burroughs compllers are good (really good) and PASCAL's
viability in Burroughs must rest on real strengths, not just claims. This,
coupled with the known welrd features of CDC systems (and thence PASCAL) must
lead to the uncovery of unfortunate aspects of PASCAL. | cannot help it.

3. PASCAL SUPPORT

| was surprised to see you write in the sditorial thst you believed PASCAL
meets Bil] Waite's criteria for ecological viability, for my Impression [s
quite the reverse. Possibly In CDC machines It might have enough support, but
that is a tiny fraction of the computing community. To take some examples,

| have assiduously tried to amass the PASCAL softwars that PUGN assures me

is around. The results have been decidely poor. Apart from Interchange media
problems, most programs contain machine dependencles of considerable
subtlety, and totally Insdequate commentary. Not all, but most. The
original XREF used at least seven non-standard features which had to be
repalred, some with diffliculty, and even then its specifications left a lot

to be desired. To my knowledge, no available cross-referencer is able to
distinguish between names which are lexically the same but declared at
different levels, nor can they cope with long names (say 72 characters?).

To summarfze, | think your editorial Is ahead of time. We certainly don't
need crusaders yet, we need some consollidation before Irreparable harm is done.
At its present state of development, PASCAL stands to go under the FORTRAN
steamroller, for precisely Waite's reasons. And really, what do you mean

when you say that PASCAL is the third out of 20 languages in four years?

In Minnesota? Measured by what? if | was advising someons to choose

a language to write & significant numerical plece of software at this point

In time, | couldn't (r-grotfully) advise them to use PASCAL. It would be
Irresponsibte.

So much for the criticisms. Can | still assure you that despite the

bits of rubbish here and there in the Newsletter, it serves a very useful
purpose. 1'11 keep on contributing because this Is a critical point in
PASCAL's development, and because Its well WiRTHwhile. Without the newsletter,
wide communication would be much more difficult, and your policy of no
censorship or refereeing Is conducive to good development.

1'd tike, too to put a question to you. In Newsletter #6, you published

some of the correspondence between Judy Muilins and myself on implementations
on Burroughs B6700s and ICL 2900s (which we sent you). We've been carrying on
an active correspondence, some of which would be of Interest to the PASCAL
community. In some ways though, such a practice could be misunderstood

or embarassing as half-baked ideas come to light, If it were all reprinted by
you. The important Issues often get rewrltten as notes to PUGN (some
examples may get Into #8), but what | ask Is this: would It be useful for

the readership to look over the letters as they develop? i'm game, and
1'11 ask Judy, but | am uncertain as to the merit of the practice. What
do you think?

Yours sincerely,

Arthur Sale

Professor of Information Science
Unlversity of Tasmania
(Burroughs B6700 implementor)

PS. By the way, apropos of your plea for help, if there is anything
doing on standardizatlion, you can count me in. |'ve had a falr bit of
experience with standards and standards committees, and | know just how
large a task there is to do. Perhaps | can help as co-ordinator?

8# ¥3IL13T1SKHIN VISV

LLBT AVH

l§ 39Vd

m UNIVERSITY OF MINNESOTA | university Computer Center
TWIN CITIES
22 Ewm Buliding
(612) 3734380

April 26, 1977

Prof. Arthur Sale
Department of Information Science
The University of Tasmania

Box 252C G.P.0.

Hobart 7001 Tasmania

Australia

Dear Arthur,

It's been too 1 since I have written s Tetter. [received your nice

personal reply and all the enclosures of March 18 to my personal letter to you
dated March 10. Yesterday we got your Burroughs 6700 Status Report. Thanks!

Since returning from Southampton on March 28 I've been swamped with work. On
March 31 Niklaus came to the university here to give a talk on Modulz (250 persons
plus, standing room only). Next week for 4 days, the COC annual user's meeting
was held here in Minneapolis. I began to go through a 40cm mountain of mafl and
process over 150 new PUG membarships. We staried to put together PUGN#S on Apri)
16. Now we are finishing that up and should go to press within a few days.

ain 1'd Tike to apologize for singling you out as an example in two consecutive

{torials. The last exchange of letters has 1 hops helped me understand that your
attitude that I at first verceived as “very opinionated” snd “know 1t all® is
actually intended to provoke debate, to prevent dogmatic thinking among over-
enthusiastic Pascalers, and to overcome great distances from Tasmania. In short,
as the cliche goes, we p people 1ike you. And your valuable contributions to
PUG and the Newsletter Justify mailing the newsietter to you by afrmail and at a
Yoss. But I would 11ke to take you up on your choice of being a distribution
center {and perhaps money collector) for Australasia for the next academic year
(beginning with #9). We'll have to work out the details this summer (winterl).
nst v:' a}mn in Japan, but I suppose Japan cannot be mailed to cheaply from

ralfa

On to amother topfc. When 1 looked at Judy's letters I discovered that there was
one from her to you I'd never seen that would have really clarified the exchange
in PUGN#S. 1t explained their proposed ICL ASCI] subset character set. In fact
tl\g have taken up the fdea proposed by yourself and others which 1s to process
both ASCII and EBCDIC internally as compile options.

On the question of files and the program Mudin? and the larger accusation that
Pascal s biased toward CDC computer systems, 1'd 1ike to say that I believe:

1) Files as a data structure (sequential access) are a useful concept and
therefore files can be special entities represented by variables and used for
performing 1/0. I don't believe in file assignment though.

2) Arrays are a random-access structure in Pascal and so “virtual” (or slow)
arrays would be appropriate for “direct access secondary storage” (read: operating
system random-access files). And so arrays can be used for 1/0.

3) The program heading is not a "CDC quirk."” The first Pascal compilers for
COC machines did not have them; is .not a necessity. CDC Fortran coincidentally

has a similar construct. But when you think about it, the program heading would

be the ideal place for tqlatting all your computer system dependent {information

about e attributes (KIND, MAXRECSIZE, etc.) on the B6700 instead of the
declaration. The program heading is a natural way to interface a program to Its
surrounding enviromnment with formal parameters.

4) Other complaints against CDC bias probably should be n:hnud as simple-
architecture/milti-register machine blas, Wirth designed Pascal to be run
efficiently on taday's machines (1970-72) and he has had at least IBM 360,

CDC 6000, and PDP-11 exparience. So we witness that highly structured computers
such as the B6700 and ICL ugpor 2900) are among the last to have Pascal compilers.
The problems facing 360 {mplementations are probably due to interfacing with

their dinosaur operating systems). Nagel's DEC-10 compiler, Mike Ball's Univac

ci:onpim. ni\d Hikita's Hitac 8000 (Amdahl 470) compiler have shown that “COC bias”
s a phony {ssue.

I'm glad you are willing to change your views as you fndicated
As 1 said, I'm stil1] Tearning about the 1ssues myself and have
changed my views.

Regarding Pascal's viability and keeping 1t in the greenhouse, I should say that
for batter or worse some smaller U.S. computer companies are jumping the gun and
have stolen Pascal from the greenhouse. Do not underestimste the "real world®
{nterest 1n Pascal in the U.S. The PUG membership fn the U.5. s st least 40%
-academic versus less than 10% outside the U.S. How about that? Maybe that's
why your viewpoint differs from mine. I don’'t really think I'm ahead of time
because one can't control what everyons else is doing. Sure, 1t would be nice to
have consolidation. But just the fact that PUG and PUGH exist have put activities
out of reach by spreading the word very widely. If you fear irveparable harm - it
has probably already happened - but realistically we couldn't have on the one hand
protectad Pascal in the ?nenhouu. and at the same time organized a group for
consolidatfon. We organized openly and, among other things, that's how you and I
came to know each otherl But you are right about: "1f 1 as & well disposed friend
of Pascal can find holes, be assured that real enemies will be Tess forgiving.”
I'm hoping the news #8 will bring regarding standards will be encouraging news to
you, and I apologize that I can't fit 1t here in this letter.
Minnesota usage of Pascal? 1 did point out that the -#7 editorial did not say that
Pascal neets Waite's criterta, but rather in trying to spread Pascal usage at
Minnesota, Waite's guidelines proved to be very useful in practice. You wanted a

breakdown on usage: ¢ toatructions!
Processor vlunbtr of research um; oroducgic.n; runs/number o _ns rjlc_ ona ‘:;ms

asca

arding syntax. .
wmistakes and

L] » i] » »
MNF Fortran (239,032 417,317 225,501 393,107 526,252
Cobol (44,750 42,756 33,711 6,2 +558
APL 4,312 673 605 3,935 6,262 6,658
SNOBOL 8,715 11,645 5,505 (23,271%) 28,727 36,494
SIMULA 686 2,192 2,310 - - -
ALGOL 615 1,763 2,581 (75; 1,373 1,998
BASIC (3,412 28,103 5 (145,977) 448,814 1,476,984

(*Other processors include COMPASS(assembler), DARE,EMULATE,GPSS,LISP,MIMIC,MIXAL,
PL/1, SIMSCRIPT, RPG. There are over 100 interactive terminals for student
use; the University of Minnesota has 55000 students on the Twin Cities campus.*)

Regarding the printing of your and Judy's correspondence, that’'s fine (except that
space may not permit). As will be evident in #8, there is more than enough debate
going right now. Your implementation notes, etc. are very nice. We'll print most
of them in #9. Thank you very much for being understanding. 1've resolved to be

more careful in the future.
Sincerely, 2 ’

8# YIL1ITSHIN TYISV

‘AVW

L1261

8¢ 39Vd

UNIVERSITE OE NICE

LABORATOIRE D'INFORMATIQUE

PARC VALROSK
06034 NICE cepDEX
TéL. 51 91 00 Nice, te 4th March 1977

Dear Andy :

I am sorry that the paper I promised to write is so late, but
you are preparing PUG Newsletters faster than I can read them. At last,
here is the paper on the Pascal implementation we are developing for the
CII Iris 50. It is not yet in the form requested by Tim Bonham, because
nothing is terminated, and anyway the Iris 50 is a machine which does
not exist in many copies.

A Pascal subgroup has been officially set up as-a part of the
group “"Languages and programming" of AFCET. To give comparisons, and with
the corresponding scale changes, AFCET is the French counter-part of ACM,
and the group on languages and programming is something like SIGPLAN, so
this Pascal subgroup is something like STAPL within SIGPLAN within ACM;
very complicated indeed. The first meeting of the group will take place
in Nice on June 13 and 14. A newsletter is planned to begin at the end
of the present month. Answers to a questionnaire show strong interest of
participants on frequent information exchanges, and desire to keep good
bonds with PUG. If there is no copyrignt problem, and with your
authorization, I intend to extract some most important informations from
PUGN for our newsletter, and even maybe to directly copy some pages.

Do you think it would be interesting to publish some brief
information about my compiler writing system (written in Pascal and
generating compilers written in Pascal) in a section of PUGN about
software writing tools? This system {s probably bigger than ordinary
tools (about 6000 Pascal lines), and has a very special purpose, but
it presents some interest for the community.

I am sorry to have given an erroneous information in my preceding
letter. No Pascal compilers for the IBM 1130 were made in Npuchdtel.

A Pascal-S compiler (not an interpretor) has been made by Helmut Sandmayr
Neu Technikum, CH-9470 Buchs, Switzerland. I apologize for the error to
people who have already written to Neuchdtel.

Yours sincerely,

s

0. LECARME

University College, Cardiff

Profe R.F. Churchhouse, B.Sc.,M.A,Ph D, FB.CS.
Head of Department of Computing Mathematics

Math ics Institute, Senghennydd Road, Cardiff
Telephone Cardiff 44211 Ext. 2677 & 2678

28th March 1977.

Dear Andy,

Following the recent PASCAL Symposium at Southampton may I
make an impassioned plea on behalf of potential future users
of the language.

So many people talk glibly about not re-invemting the wheel.
Yet as I survey the many and diverse efforts at implementing
PASCAL on mini/micro-computers (particularly PDP-11s) surely
this is what we are in danger of doing. For unless we both
a). recognise the value to others of the software products we
originate and b). invest accordingly in faithful standardisation,
intentional portability and quality documentation, much is vanity.
To take the specific example of providing PASCAL for student
teaching purposes on a PDP-11, what is the use of existing
"implementations" which a). their originators have never even
thought of as potentially useful to others and b). are non-
standard, tied to a particular operating system without provision
for change, and atrociously written up? My plea is to all good
PASCALlers to honour the original spirit of the language by
practising these principles and, possibly much more important,
doing their utmost to persuade others to do so also. Down with
back-street implementors!

Yours sincerely,

f}b,,;\ ! dote -

Nick Fiddian

8# 43L13ITSMIN TVISV

‘AW

L1671

6¢ 39Yd

IMPLEMENTATION NOTES

IMPLEMENTATION CHECKLIST

IMPORTANT | ! !

We have added one new itea to the Implementation Checklist (reprinted below) to
indicate the kinds of library support provided by implementations. Once again we must ask
implementors to follow the Checklist, and to submit notices in “camera-ready” form.
Because of’ the large number of implementations being reported, we request that all notices
be single spaoced.

1. Names, addresses, and phone numbers of iaplementors and distributors.
2. Machine(s) (manufacturer, model/series).

3. Operating system{s), minimal hardware configuration, etac.

4. Method of distribution {cost, magnetic tape formats, eto.).

5. Documentation available (machine retrievable, in form of a supplement to the

book:
Pasoal User Manual and Report),

6. Maintenanoe policy (for how long, future development plans, acoept bug reports).
7. Fully implements Standard Pascal (Why not? what is different?).

8. Compiler or interpreter? (written in what language, length in source lines, compiler
or interpreter size in words or bytes, compilation speed in characters per second,
compilation/execution speed compared to other language processors {e.g., FORTRAN)).

9. Reliability of compiler or interpreter {poor, moderate, good, excellent?).
10. Method of development

cross~coapiled, eto.;
implementors).

(from Pascal-P, hand
effort to implement

coded from scratch,
in person months,

bootstrapped,
experience of

NE"!] 11, Are libraries of subprograms available? Are facilities for external and FORTRAN (or

other languages) proocedures available? Is separate compilation available?

GENERAL INFORMATION (77/4/28).

As an aid to persons searching for implementations, an index to the laplementation
Notes seotion for Newsletter iasues 5 through 8 is printed at the end of this 1issye.
Unfortunately, we had to leave ocut or summarize a number of letters and notices because of
space constraints,

~Jim Miner

All Implementors:

Why not use the Pascal Newsletter to help yourselves (and all of us) disseminate news
of new releases for existing implementations to all the sites on your distribution 11at?
Also, to ensure that everyone on your list receives the Newsletter {and 1is a member of

PUG) please send out an All Purpose Coupon with each copy of your implementation that you
distribute.

Comment on Micro-processors.

One of the more interesting developments that we have seen is the increasing use of
Pascal as a micro-computer programming language. Among these machines we count DEC's
LSI-11, the Intel 8080, the Motorola 6800, TI's 9900, and the Zilog 2-80. (I'm Jjust not
sure about the Nanodata QM=1....) Most of these are interpreted, but native code
taplementations are beginning to appear {see Pete Zechmeister's Intel 8080 notice in this
1ssue).

Another fascinating rumor, whioh was published in two places (Byte, and Computer
Faire) suggests that the next Zilog processor will be based on Pascal -« with the
instruction set including sowe Pasoal-like constructs. Apparently users and designera are
beginning to see the advantages of a simple yet powerful language. Perhaps the experience
will lead to cleaner micro architecturs.

SOFTWARE WRITING TOOLS

Responding to the ocall for a ocentral clearinghouss for software writing tools,
Richard J. Cichelli has volunteersd to distribute them and will announce a formal polioy
in Newsletter #9. At our suggestion Rich will limit distribution to {mplenentors who
distribute Pascal systems and who will include the software tools in each distributed
copy. This 1s to prevent an absurd workload for Rioh. Rich i{s probably in possession of
the largest number of software writing tools in Pascal and for Pasoal programners, (See
the artiole entitled "Pasoal Potpourri® in Newsletter #6.)

PascaL-~P

Remember, there is a policy of no malintenance promised on Pascal P4. It is the final
version from Zurich. Nevertheless, Christian Jacobi (ETH, Zurich) has provided us with two
sets of changes (printed below) to be made to version P4, mainly correcting bugs in
address calculations and code generation. Note that the form "name.number® refers to the
sequencing on the compiler source as distributed.

Unfortunately we have not received the results of the Pascal-P questionnaire which
appeared in Newsletter #5. Chris informed us on February 14 that the results were in
preparation.

UPDATE 1 to Pascal P4 January 1977

Replace line BOOT.4 by

for i := ordminchar to ordmaxchar do sopfchr (1)} = noop
Replace line P.477 by
load; genlabel(lcixk
Insert after line P.479
genujpxjp(57(*ujp*),lcixx
Replace line P.147 by .
beqgin align(lspi,displ),
Replace line P.424 by '
locpar := locpar+ptrsize;

align(parmptr,locpar);

Insert after line PASCP,.3200
align{parmptr,llcl):

Replace line P.531 by
if iarypet.form) power then

g# ¥Y31131SMIN VISV

‘AVH

L2461

Ot 35VYd

e A S R PRI 1 R L N A P

Insert after line PASCP.3204

if vkind = actual then
begin
Insert after line PASCP.3207
end;
Corrections to the Pascal P4 System UPDATE 2
rap————.

Replace line p.122 With kind regards

*/

X/ NOTES . IS AS CLOSE TO THREE HORIZONTAL BARS (CHE DISELAY CODE
x/ 60 OCTAL AND EXTLRNAL EBCI 36 OCTAL AS UUR FONT CAN COMIE,

X/

x/ SHKCAAOK KO JOK KO8R KK A AOKAOK K K S X KK KK KR Y K8 A AOK K A KK AOK SR &K AR KA 0 KOR XKk X
. ¥4 EUARHINGS THLIS MOUSET 1S UNTESTED. WE DONT HAVE A HODIFY x
X/ APROCESSOR AVATLARLE ON SITE, THE NHORS WERE MALE UGING x
X/ XA TEXT EDITOR AND THEY AFFEAR TO WORK. FLEASE INSFECT X
X/ XTHE RESULTS BEFORE DISTRIBUIING BEYOND YUUR SITE. USER BEWARE . X
x/ A FOKAOKAOK KKK H0K JOKAOKOK AR A KOK KK XK AOIOK K KIOK K A KR KK AOKHOK KKK 0K ACK K HOKOKR KK HOK K %K

K ETE Bt
CHTE

CHGT

CHDFLETE FASUF. 376 FASCR, 379

flc := l+k-(k+l) mod Xk o ‘
- . kuzdu
Ch. Jacobi
Replace line p.528 ¢
cstptrix
topnew
topmax

i= 03
t= lcaftermarkstack;
1= lcaftermarkstack;

The first correction delivers an improvement of storage
allocation in case flc = 0 (e.g. records).

The second correction is evident.

Craig E. Bridge (DuPont, Wilmington, Delaware) furnished the modifications printed
below to allow the compiler to be cross-compiled between machines with different character
sets. He also notes in a letter dated Feb., 16, 1977, (which was not printed for lack of
space) that where cross-compilation is to be done very often the cross-compiler should be
modified to generate proper code (jump table) for statements of the form "case chartype of
... ond",

HAIDENT DUIPONT
XUVECK FASCP

v/ DUI"ONT HOD BET FOR PASCPF VERSION FA 04-JAN-77 C.Es BRIDGE

x/

X/ ELIMINATE LAST HOST MACHINE CHARACTER SET DEFENDIENCY THAT

x/ FROFAGATES FROM THE HOST COMFUTER DURING CROSS CODE GENERATION.
x/

x/ NOTE?! THE PASCP COMFILER ALREADY HAD A UNIVERSAL INFUT FROCESSOR
*x/ HOWEVER THE CASE STATEMENT CODE GENERATION FATTERN RANKS ON THE
x/ ORDINALS OF SETS (INCLUDING THE IMPLIED CHARACTER SET) TO BE

x/ THE SAME ON THE HOST AS LT IS ON THE TAGET MACHINE. TH1S I8

. ¥4 NOT NECESSARILY TRUE OF CHARACTER SETS. ‘

X/

x/ IN FARTICULAR, CASE CH OF 4eees GENERATED A JUMF TABLE
x/ USING THE ORDINATES OF THE HOST MACHINE CHARACTER SET. GFE

x/ STATEMENT FASCP.376

X/ N

*/ FURTHERMORE» ANY PASCAL FROGRAMS WITH STATEMENTS OF THE

x/ ABOVE FORM CANNQT BE CROSS COMPILED FOR MACHINES WITH DIFFERENT
x/ CHARACTER SETS UNLESS THE CASE STATEMENT CODE GENERATION

*/ FATTERN 18 MODIFIED.

IMPLEMENTATION NOTES

CASE. CHATELCHT OF
(B NN
FOELETE .79
UNTYL CHARTEFLCHD

AL TE PAGCTE 8395
U IR
PASET 453
CHSTRRUOS
AN ETE 1ascr . 474
CHEON NS

AHELETE

KOELETE

XN LETE FASCH .86
CHL TS

Al LETE FOSuk <495
LG

AHLETE PAS 501

XDUELETE T'ASCH.S14 FASCF.WS16
GFECTALY
AN ETE oG
CHEEACKED 8Y $=s OTHERSY
XL TE 17453

G TROUO S
BOELLTE 1ASLI A7 4
CHEOL ONS

¥OFLETE PAGCR . 480

(M}
XDFLETE FASCE
CHL TS
XDEDETE FASCE, 495
CHGT?
AOELETE FASCE 501
CHLEFAREN
KOEEETE FPASCE. 514 FASCR.S516
SPECIAILS
¥DELLETE F.8%9
CHSIPACE?
ADELETE P.591
CHARTFL ../ 3
¥DELETE P.593 F.396
CHARTFL =]
CHARTPL .v..]

8Y = OTHERSY

LETTERyNUMEER» &
HLFAREN» CI

t= SPECIAL}? CHARTPC. .3
CHARTPL..o .3 3= CHPERIODS
CHARTPL..L..Y = SPECIALY
CHARTFL.3.3 $= CHCOLON?

t= SPECIALY
CHARTFL .ern.] $w CHSTRQUOS
: CHARTFL.].] t= SPECIAL}
XDELETE P.598
CHARTFL.<.] t= CHLLT§ CHARTPC.>.1]

CTYALy TLLEGAL s CHETRQUQ y CHEERIOD CHL T »

ACE)D §

TN LSPECTAL y THEFGALy CHSTRODO » CHEDL DNy

CHEFRTOOy CHL T CHGT s CHEDARE N CHSPACE T

$e= CHGTS

t= GPECIALF CHARTPL.(.] = CHLFPAREN?
t= CHSPACES

g# ¥IL13ITSKIK TVISV

AV W

LL61

Th 39Vd

PascaL TRUNK COMPILER

Dear Mr. Mickel,

1 send you here the information about the trunk compiler you asked for:

1. Implementation + distribution
H.H. Nigeli
Insti tut fiir Informatik

ETH-Zentrum
CH-8092 Ziirich / Switzerland
Tel. 3262 11

2. The trunk compiler is the machine independent part of a Pascal
compiler in which the code generation has to be inserted.

. Distribution on magnetic tapes. Costs SFr. 50.-- .
. Documentation (in German) will be available in May 77.

. Full Pascal is treated.

. The trunk compiler is a Pascal program with a certain number of
empty procedures.

9. Reliability: moderate.)
10. Development: from Ammann's Pascal CDC 6000 compiier.

3
4
5
6. Maintenance policy: no policy defined yet.
7
8

Sincerely yours,

'.\‘x\ag;/ﬂ/‘

H.H. Nigeli March 3, 1977
PascaL J

Manpower problems have forced us to cancel the
projected February Release of PASCALJ. Although we
have made some prodgress in our efforts to improve the
bootstrapping process, we lack the supporting documen-
tation necessary for a distributable product. We will
therefore continue to distribute the September 1976
version of the system to those requesting it.

We would like to emphasize once again that we
consider the portability of this version to be in-
adequate, with implementation times ranging upward
from six man-months required. Reduction of this
implementation time is our prime concern, and is

absorbing the meagre resources which are currently avail-

able to the project. As soon as significant progress
has been made in this direction we shall release a new
version. In the meantime, we shall attempt to fix any
reported errors.

- Software Engineering Group

UNIVERSITY OF COLORADO
BEPARTMEMT OF BLECTRICAL ENIINEKEAING
BOULDER, COLORADO 80309

MobuLa

Niklaus Wirth has published three articles desoribing his latest language whioh he
calls Modula. The articles appear in the March, 1977, issue of Software « Praotice and
Experience (vol. 7). It is our polioy to discuss languages adhering to the principles
embodied in Pasocal, and some of the characteristics of Modula make it a very attraotive
programming tool, particularly for small, peripheral oriented machines. For this reason we
reprint here the Summaries (abstracts) of the articles. Please note that Niklaus considers
Modula atill in the experimental stage snd the Zurich implementation is not for
distribution.

"Modula: a Language for Modular Multiprogramming", S-P&E T (1977), pages 3-35.
SUMMARY
"This paper defines a language called Modula, which is intended primarily for programming
dedicated ocomputer systems, inoluding proocess control systems on smaller machines. The
language 1s largely Pascal, but in addition to conventional block structure it introduces
a so-called module structure. A module is a set of procedures, data types and variables,
where the programmer has precise control over the names that are imported from and
exported to the environment. Modula inoludes general multiprocessing facilities, namely
processes, interface modules and signals, It also allows the specification of facilities
that represent a computer's specific peripheral devices. Those given in this paper pertain
to the PDP-11."

(Copyright (C) 1976 by N. wWirth)

"The Use of Modula", S-P&E 7 (1977), pages 37-65.
SUMMARY
"Three sample programs are developed and explained with the purpose of demonstating the
use of the programming language Modula. The examples concentrate on the uses of modules,
concurrent processes and synchronizing signals, In particular, they all focus on the
problems of operating peripheral devices, The concurrency of their driver processes has to
occur in real time. The devices include a typewriter, a card reader, a 1line printer, a
disk, a terminal with tape cassettes and a graphical display unit. The three programs are
listed in full."

(Copyrignt (C) 1976 by N. Wirth)

"Design and Implementation of Modula", S-P&£ 7,67-84 (1977)
SUMMARY
"This paper gives an account of some design decisions made during the development of the
programming language Modula, It explains the essential characteristics of its
tmplementation on the PDP-11 computer, 4in particular its run-time administration of
processes and the mechanism of signalling. The paper ends with some comments on the
suitability of the PDP-11 for this high-level multiprogramming language.®

(Copyright (C) 1976 by N. Wirth)

FEATURE IRPLEMENTATION HOTES

READING AND WRITING SCALARS

Introduction
1t has long been a source of irritation that 'standard" PASCAL does not

permit the reading of boolean values (though- it permits their writing), and
does not permit either reading or writing of programmer-defined scalar types.
In Burroughs 86700/B7700 PASCAL, both these deficiencies are remedied, and
the regularity of PASCAL is improved. The utility of this step should not
need labouring, especially as it dispenses with unnecessary rules, and In

view of Its obvious uses in an Interactive environment.

8# ¥ILLITSKIN TVISV

‘AYH

LLBT

¢h 19Yd

L e Bag A YW AT R - i o o LE AT S e

Example

program example(output,input);
type
answers = (yes,no,maybe);
var '

E

reply .cmwcrn, ’ . s

begin
read(reply);. L
writeloutput,replyl; " <
uriteln(reply:8);

end.

Semantics of reading

The [nput stream Is scanned for an alphabetic character. It and succeeding
slphanumeric cherscters are assembled into a “lexical token'' according to
PASCAL rules, and then compared with a storad table of the programmer-defined
cohstant-nemes of the type. If a match occurs,' “‘tha appropriate constant valus
" Is stored Into the varisble in the read 1lst, c_tb.mlu a resd error ocecurs.
"The construction of the "lexical token' Is terminsted by sny character which Is
not a lphenumeric (usually a space or a comma). ‘

Semantics of writing
The characters of the constant-name corresponding to the scalar value,

preceded by a single space, are inserted into the output stream if no

field width 1s speclified. If a width ls specified, the name Is Inserted Into
a character fleld of that slze, right Justifled and filled with preceding
spaces If necessary. If the name will not fit In tha field, or If the
scalar-value Is lmﬁ‘wiéét'oﬁrmgc'.;n~m~fatii write .f}o;’ occurs,

- Boolemn values : . ;
" "Values of boolean type are treated cxocﬂy as If dechnd
tupe ;
boolean = (false,true);
and thus the external representatfon of any boolean value s falac/truc
(and mot F/T. or 0/1). .

lgt_'rough: 86700 mihr‘ featyres " L
Since the B6700i: : tru
“one name from aiother, uldl tion, since 1mr-uu letters are permitted,
" the latters tn fhput tokens are upper=cased before comparison with the
stored name-table which is stored in canonlcal upper-case form by the compller.

Persons requiring their programs to be portable should be sware that

"standard'' PASCAL permits implementors to ignore names after the first 8

characters, though this feature Is not "standard".

Scalar name tables

The name-table Is not created by the compiler unless the complled program
contains & read or write with a scalar element, The table only Includes '
the types the compller finds are necesssry (except for boolean, which Is
handled by a table ‘internal to the read/write Intrinsic procedure). The
run-time space penalty is typically véry smad1,

RECOMMENDATTON

84 ¥IL131SMIN VISV

1§ this increased negulanity is attractive Lo an {mplementon of
PASCAL, on if a teacher. can convince an implementon to include it,
1 suggest adherence fo the above ideas as far as possible. This
applies Lo the reading of boofean values alone, as well as 2o a

more comprhensive adoption of the facility.

POINTER VALUES

LL6T "AVH

Introduction

This Implementation note serves to document some relevant decisions relating
to the representation of valuss of e pointer type In B6700/87700 PASCAL. The
note may be useful to users of this computer and to other Implementors.

Norma) polnter valuss .
The representation of pointers In the 86700 and 87700 computers could have

been a problem of considerable difficulty (perhaps Impossible) If PASCAL had
been defined so as to allow pointers to objects outside its heap. Since It
did not permit this, It allowed the heap to bs implemented as a single

segment of virtual storage (paged into 256-word pages). Normal pointer
values are thus represented as integer words, being utllized as subscripts
Into the heap vector when a pointer access is roqulnd it Is important to

realize that the concept addnu does ‘not’ oxl n Burroughs l6700/37700

The legal values of a polnt;r variable range from zero to an upper limit
which is complied Into a PASCAL program. The defeult limit glves 1000 words,
but this may be set at any value by the comp!ler option HEAP.

The nil value

The ntl value, which polnts nowhere, is Implemented as a very large numeric
value. Any reference to an apparent object (even [f it Iincludes record
selection or array Indexing) through a pointer which has this value will cause
s machine Interrupt when the access Is sttempted (because the subscript ls
-out~of-bounds of the heap size shown in the heap descriptor). This check

has no speed penalty as It Is carried out by the hardware. 1t remalns possible
to compare pol nters for equality even with the nil vatue.

The uninitiall zed value

The value of & pointer varlable before It Is first specifically defined by

an assignment, read, or whatever, is left to the Implementor's discretion by
“'standard' PASCAL. It is worthwhile pointing out here that the uninitialized
value méy perhaps not be best implemented by nil and a speclal representation
should be cons!dered (though on some computers there may be no other sultable

value).

Because of the importance of pointers, and the responsibility of compilers to
detect as many illegal constructs as possible (as well as correctly compiling
the correct ones), the uninitialized value for pointers in the Burroughs
B6700/87700 PASCAL is not zero (the 86700 nmorm), nor s tt nil. Uninitialized
pointers are set to B6700 words with a tag of six. Such tag-six words in

the B6700 and B7700 computers can be overwritten with a numeric or other-type
operand (tags 0, 2 & 4), but an attempt to utilize a tag-six word in arithmetic
or indexing is illegal and causes a machine Interrupt. The use of an
uninitialized will therefore be detected {whether in a comparison or an access)

and will cause program termination,

Conclusion

The B6700/B7700 PASCAL compiler applles stringent testing to PASCAL pointer
values so as to enforce compliance with the ''standard'. tmplementors on
other computers may wish to consider whether they can make effective use of

the nil value, and of the difference between nil and the uninitialized value.

/

Arthur Sale
Professor of Information Science
University of Tasmania

1977 Februavy 15 (Burroughs B6700 implementor)

Implementation Note on Run-time Pointer Tests.

The paper by Charles Fischer and Richard LeBlanc described in the Here and There
(Articles) section presents a method for feasibly implementing run-time pointer checks.
The method has been installed successfully on their univac 1100 compiler, as well as by
John P, Strait on the CDC~6000 compiler and by John Reynolds on the ICL 2970 compiler.

Simply stated, each unique element allocated on the heap is assigned a unique integer
or "key" (a counter starting at 1) which is stored with the pointer variable and with the
heap element. The key and pointer value {address) are transmitted together during pointer
assignuent or parameter passing. A pointer reference is considered valid only if the key
in the reference and the key in the heap element matoh (comparison of keys for equality).
Therefore, "dangling references” to a heap slement which has been disposed will be
detected (implying that DISPOSE ohanges the key in the disposed element). Note that the
method 18 nearly secure -- 1t is possible (but very unlikely) that a key will match with
garbage on the heap existing in the place of a disposed element. Similarly, undefined
pointers will have undefined keys which could, with low probability, match their referent
keys.

-Andy Miokel

MACHINE DEPENDENT IMPLEMENTATIONS

BurrouGHs 3700, 4700

Dear Tim:

Here is a brief outline of our Pascal project; please note
that although our intentions were to produce both 84700 and
B6700 implementations, the latter has not been possible.
Fortunately, Professor Sale is producing a B6700 compiler.

1. Implementors.

R. M. Lansford
3620 Greenhill Rd.
Pasadena, Ca. 91107

P. L. McCullough

110 S. E1 Nido St.

Pasadena, Ca. 91107

W. C. Price

480 Pembrook Or.

Pasadena, Ca. 91107
2. Environment.
This implementation will run on Burroughs B37/4700 machines,
with Accumulator operators, under MCPV 5.7 and the
Time-Sharing System.
3. Distribution.

No plans at present - the need has not arisen.

4. Documentation.

What there is exists as a forward to the program 1istin§, in
the form of a supplement to the Pascal User Manual and Report.

g# 43IL13ISKIN TVISV

‘AVW

L1661

hh 39Vd

o m— L £ RN A R WY, B4

B A = ¥ B oo

5. Maintenance policy.

Ken Bowles reports that a B6T00 implementation exists at the University of*California :

None. Development has terminated. "If you find'em, fix'em." San Diego. The implementation was evolved from Pascal P2 by Mark Overgaard and Jim Madden _ .

’ (of. Pascal WNewsletter #4)., The latest version is a real coapiler, written in Pasoal, Pl

whioh produces native code for the B6700. Current compile aspeed is 5000 lines per minute, -

6. Unimplemented features. but expected imprqvements oould make that 10000 lines per minute -- as fast as the
. Burroughs Fast Algol ocompiler. Virtually all of the Burroughs I/0 facilities are

a. real arithmetic B .) supported. Distribution is scheduled to start in mid-sumaer, For more 1nromuan. contast =2

b. formal procedures and functions ; Henry Fischer, UCSD Computer Center, Ls Jolla, CA 92093 (714/452-4050). ™

c. files, -with the exception of the text . x

f1les Input ‘and Output. * z

7. Added features. BRIEF NOTES ON A PASCAL IMPLEMENTATION AT OTAGO UNIVERSITY -

a. segmentation ' About 18 monthe ago we obtained an implementation of PASCAL for a Burroughs m

b. symbolic procedure call tracing) b

c. stack checking and statistics. B6700 computex from Karlsruhe University. For reference, this compiler produces 2

d. packing is automatic symbolic code for a hypothetical stack machine. This symbolic code must be oo

assembled to produce absolute machine code which may then be interpreted. Both
the assembler and interpreter are written in Burroughs Extended ALGOL. Since the
The compiler was bootstrapped from an ‘"]y P1 compihr , compiler itself is written in PASCAL, the compilation of a program involves the
obtained from Cal Tech, : interpretation of the compiler code file. As a consequence, on our machine, it
" of two passes. The 'n”t {s written in . took about 50 minutes processor time to compile the compiler.

8. Compiler development.

The compiler con
Pascal and emits

compile the PASCAL version of the compiler.

s : ‘sigmented P-code. The second pass (written in :

.P‘tad:.PL%O ke .“”b]er)' generates 4700 code from the To improve efficiency I rewrote the compiler in Extended ALGOL. This version =<
- still produces the same symbolic code but is considerably faster. For example

The first version of the code generator was written by Mike . o

Mahon in 2 man-months. An additional 8 man-months have been the ALGOL version of the compiler takes less than 1 1/2 minutes process time to [Ve)

~

~

expended in teachin?ithe compiler about such things as optimal

varfiable size and alignment, segmentation, etc.

The reasults are: I have started work on turning the ALGOL version into a true compiler for the
Pass 1 : 4000 Tines of Pascal, compiled

91000 lines/min. B6700 but priority of other work has caused delays. I will probably be getting

Pagk 2 s 2600 lines of BPL, taking 45 secs to down to it in earnest again in about July of this year.
generate code for Pass 1 of the compiler.
110K bytes are mmm logicﬂ (runnabh) segmentation

of the compi Ter i Copies of this compiler have already been mt to Massey University, Palmerston

o ’ North, New Zealand and to Warwick University ia England. If any one slse would like
a copy could they send a tape to me and I will return same with all PASCAL material
; we have plus brief notes on usage. The tapes ¢an be in one of the following formats
Sinceraly, . o B . (please specify which is required):-

o ([mjp

jﬂ M. Lanstord

9. Compiler re 1ty.

Good, but not exc lent

(a) 1600 bpi, Phase encoded, 9 track, B6700 library tape

. . RPN (b) - 800 bpi, NRZ, 9 cuck. B6700 libraxy tape

andary 17, 19779 : " *(c) 1600 bpi, Phase ancoded, 9 track) USAST: sulti-rile tape
. Q) mxﬁu. m,om. usu:um.i" 3

Computer’ Sol Univgrs s Toolonkatu - 11, Chris Bilhop
Fiuland) reports "ve have heré an nhtnh-ﬂnulud Pascal cospiler Computing Cantre
runuiu on the B6700, ‘scmpiler is written jn Burrcighs Extenddd Algol and genarates’ University of Otago -
B6700 machine code. I Won'$-0 to detalls now because:we ars curiehbly preparing a report ' . P.0. Box 56

on our Pascal implementation.” = - . Dunedin

(® Received 77/1/17. %) NEW ZEALAND.

PASCAL FOR THE BURROUGHS B86700/B7700 ~ STATUS REPORT

1977 Aprit 20

Professor A.H.J. Sale
Department of iInformation
Science,

University of Tasmania.

The PASCAL compiler for the Burroughs B6700/87700 computers has been
operational on the University of Tasmania's B6700 installation for
approximately two months in normal shift time, and has caused no operational
problems at all in that time. it Is used by staff, and by students of the
Department of Information Sclience for coursework,

A restricted release has taken place of two B6700 sites in New Zealand

to enable the compiler to operate under less favourable conditlons than

its nursery site, and to elicit comments (favourable or not). No more
sites will be supplied the current version so that potential sources of
error-reports can be kept to a manageable size, though at present no errors
have been reported from any remote site. Work has now started on a second
release which will remove three restrictions in the present version which
are annoying.

A supplement to the PASCAL User Minual and Report has been prepared, and
is available to interested persons by writing to the Department. it
details the interpretations to be given to undefined areas of the PASCAL
documents, cautionary material on non-standard features of other PASCALs,
B6700-specific features, and differences from CDC PASCAL-6000. A
Reference Manuzl is In preparation (a dictionary-style document), but is
not yet complete.

To control error-reporting and the consequent work, we have also adopted

a formal approach (more professiona! perhaps!) which may be of interest to
other PASCAL implementors who want their implementation to be kept under
control, and more than the usual plaything. €ach site supplied with a
copy of the compiler 1s reqistered with us, and glven a supply of FTR-forms
(Field Trouble Reports) which are personalized to that site. On
detecting an apparent bug in the compiler, a responsible person fn the
site will complete the FTR-form (numbered}, return a copy to us, and wait.
Our response is to acknowledge the FTR as soon as possible, indicating our
initial! assessment of it. If the problem can be detoured (in other words,
avoid the problem area), or the compiler or the intrinsics patched, a
patch notice is issued: immediately to the reporting site, and in a
regular cycle to other sites. Al)l sites will get a regular report on
FTRs still extant (not yet finalized), and on the patch notices issued.

tt is the responsibility of each site to keep the compiler's patch level

in the version number corresponding to the latest level. This is printed
on each compilation listing for checking purposes.

Examples of the three forms are attached, in case anyone wishes to
copy them.

We have not yet formalized the treatment of what might be called New Feature
Requests. A quite large number of FTRs turn out to be of this kind rather
than genuine error situations

F1erp TrounLe Report ; B6700/7700 PASCAL

[}Tﬁ No PASCAL] XYZ 01

L————'IER number

b {@ tallation oode
Inetallation and address:

Computing Centre,
The XYZ Corporation,
Somewhere,
Australia.

Date of FTR:
Person authorising FTR:

Deecription of problem (if necessary use eéxtra sheets):

Can _the problem be detoured? Yes: [:] No: [:] Irreleuant:[:]

(If YES, then attach brief description of detour used.)

Do _you want it fized immediately: [}

soon: [J

gometime: t] ?

Please attach a listing of a small program that exhibits the
problem, with supporting information. If the problem cannot

be isolated in a small program, be prepared to receive a request
for a tape if the problem cannot be otherwise resolved. Do not
gend a tape unless requested. -

S# ¥3IL13ITSHIK 1VISVd

‘AW

L/6T

9h 39V d

AckmowL EnGeMENT OF FTR For B6700/7700 PASCAL

FTR No PASCAL

Date received:

Date acknowledged:

Your FIR is

Igggvcd. ¥a do not constder it requires action.

O

Too hard. We acknowledge your problem, but it is
too hard to solve at present.

Noted. The problem requires further study and wve
aannot forecast when a solution will. be forthcoming.
n_progess. We have some tidea of the prablsm, but

it will take a few weeks to resolves.

Patohed. The attached pateh notioe should raesolve the
problem. The change will be im the next releass.
Already golved. Check the notices you have received
as we believe the problem has been reported & solved.
Migolassified. Your FTR will be treated as a

Field Suggestion, rather than a Trouble Report.
Congurrent. Another FTR has reported this, and will
be treated as the reference FTR (No).
Other:

DDDDDDDD

Attached glca;g:t gg

%

A pau ; For ‘the nscuznertnrtc. cauram
A nuaﬁéatci detour avound the probtcm.
othcr matarial

oooo

The rellability and robustness of the compiler have been excellent.

its performance is similarly good; the execution speed of the compiler

being almost identical to the B6700 Algo! compiler, and its needs for
compilation space being abbut 50-60% that of the Algol compiler (probably

due to PASCAL's lesser complexity). In execution, the compiled PASCAL
programs run slightly slower than equivalent Algol programs on average,

but the difference is usually within 20% and fairly negligible. Fortran~
compiled programs usually execute about 20% slower still unless the vectormode
optimization is invoked.

At the risk of sounding repetitious, | would like to re-~emphasize the
importance of the Waite criteria to which the Editor drew attention.
A professional attitude is essential for the success of PASCAL; otherwise

we run the risk of yet another fly-by-night language, or almost as bad,
having PASCAL's impact confined to educational institutlions.

Jebar Je——"

Parcy Novice ror B6700/7700 PASCAL

PATCH No PASCAL

> Q———-patch number

b oompiler release number

Date o atch:

Person authorising:

Ortgin of Fault: .
[F?R No PASCAL-

] Internal discovery i

Brief desoription of fault rcgairad{"

. File name: Version:

8# ¥W3IL13ITSMIN IVISV

LLBT ‘AVM

CoMPUTER AUTOMATION LS]-2

(* Computer Automation received some attention for their announcements of this
implementation which appeared in the trade papers Computerworld (Feb. T, 1977) and
Computer Weekly (Feo. 17, 1977). {Also see the lere and There App!{icatons section.) By way
of coaparison, CA sells their FORTRAN IV for $1600 to $1700, and their operating system
for §1900 to $2000. A glance at tne L3I-2 Pascal User's Guide shows the following. Only 2
levels of static nesting are allowed (p 2-4). The operators AND, OR, and XOR can be
applied to integer as well as Doolean operands. The reserved words FILE, §g0Tu, LABEL, and
PACKEU are not supported {p 2-5). Mixed mode arithmetic is not supported (p 2-6). The
following standard functions are not supported: 00D, EOLN, EUF, SQR, ROUWD, SIN, COS,
AACTAN, L, £XP, SGRT (p 2-6). *)

@)\

ComputerAutomation

March 22, 1977
Dear Andy:
Computer Automation, using Brinch Hansen's Pascal compiler, has implemented
Sequential Pascal on its LSI-2, 16~bit minicomputer running under its operating
system, OS, configured with 32K memory and moving head or floppy disk.

The Pascal system, released December, 1976, is distributed on floppy disk for a
cost of $900.00. Documentation includes the Jensen and Wirth manual and a user's
guide explaining the operation of Pascal under Computer Automation's OS, The
Pascal compiler is fully supported including acceptance and response to user
trouble reports.

The compiler supports Hansemn's implementation of Pascal as discussed in #6.
However, the 1/O capabilitios presently are based on the operating system for their
implementation. In the near future, however, standard Pascal 1/0 will be implemented.

The reliability of the compiler is very good, This has been verified by the library
of programs that are being written in Pascal here. We are making the effort to
write new software in Pascal as its advantages over assembly language are obvious.

In pass 1 of our 7 pass compiler, we have implemented an automatic formatting option.
This feature, implemented with very little compile-time overhead, rearranges the
indentation of appropriate Pascal constructs in order to make the logical meaning of
the program more evident., We have found this to be very helpful in communicating
programs between different programmers as indenting style is preserved acroas
programs. By Incorporating this into the compiler these conventions are enforced.

Computer Automation would like to see the user's group strengthened so that standards
are encouraged for program portability. This would facilitate the creation of a
clearing house for Pascal Software tools as advocated by Mike Ball in #6. Areas such
28 1/0 and compiler control options need to be standardized. I am interested in
participating in the user's group and am willing to contribute to this effort as a
representative of Computer Automation.

Computer Automation, Inc.

Sincerely, NAKED MINI® Division
. R e 18651 Von Karman
Late T ATy L Irving, California 82713

Teiephone 714 833 B30

Robert C. Hutchins TWX 910 595 1787

ControL DaTta CyBeER 18

Jim Fontana (CDC) describes the CYBER 18 as a self-contained interactive system, and -

the compiler as being derived from the compiler for the COC 2550 front end processor,
pennis Nicolai (CDC, Minneapolis) told us that the CYBER 18 and the 2550 have equivalent
instruction sets, and that the compiler ia a cross-compiler which runs on CYBER T0's and
170's. Code is linked and "down loaded"” to the CYBER 18,

ControL Data 6000, 7000, Cver 70, Cvmer 170

1. On January 31, 1977, Niklaus Wirth and Urs Ammann of £Td, Zurich, entered into a seven
point agreement with Andy Mickel and John Strait at the University of Minnesota for the
purpose of future maintenance of Pascal 6000. Maintenance duties will now be handled by
Minnesota, We will continue to collaborate with Urs, Niklaus, Chris Jacobi, and Svend
Knudsen, and other Pascal 6000 users in development of the Pascal 5000 system.

2. [IPORTANT: wWe are now soliciting loocal modifications and additions to the library
that have been made to Pasoal 5000 at your site (we are working on a Aelease 3). Please
send a 1isting only to John £, Strait, UCC: 227 Exp Engr, University of WMinneaota,
Minneapolis, MN 55455, USA,

3. We would like to thank Wilhelam Burger (U. of Texas), Dave Tarabar (U. of
Massachusetts), Gideon Yuval (Hebrew U.), Tony Addyman and Peter Hayes (J. of Manchester),
Helmut Golde (U. of Washington), Richard Cichelll (Lehigh U.), Gary Carter and Ron Sheen
(U, of WNevada), lony Jerber and Carrol}l Morgan (U. of Sydney), and Michael Hagerty (ABT
Associates) for already sending in listinga.

4, As announced in Pascal Newsletter #5 we are still accepting bug reports.
5. We are soliciting listings of software tools.

6. Release 3 work is underway. Release 3 will appear no sconer than early 1978. These
features are projected: improved compiler and run-time system, enhanced library, enhanced
tools, documentation, and installation procedures,

7. Peter Hayes in a letter to Urs Ammann dated Jan. 18, 1977, suggested that the
University of Manchester's 7600 mods to Pascal 6000 (derived from CERN's 7600 mods
announced in #5) be included on the distribution tape. We intend to accommodate this 1in
Release 3. .

RECAU Pascal Manual by Jorgen Staunstrup and Ewald Skov Jensen, Regional EDP Center
at the University Aarhus, Denmark {March, 1977, 177 pages), describes the CDC 6000 Pascal
implementation with local extensions. Because Pascal is the most-used language there (1) a
definitive description (better than Jensen and Wirth) was deemed neceasary.

-Andy and John. L4

8# Y3ILLIITSMIN TVISY

AYHW

L/6T

8h 39Vd

DatA GENERAL Hova

University of Lancaster
Dear fxl\jA/

The Department of Computer Studies at Lancaster University has
developed facilities for running PASCAL programs under the RDOS
operating system on the Data Genersl Nova series of computers. We
sre prepared to release these facilities as from lst May, 1977, with-
out -y formal commitment te provide support.

Programs are compiled using the PASCAL-P4 compiler, which produces
PCODE. This is then converted to binary form by an assembler (written
in PASCAL), ready to be executed by an interpreter (written in NOVA
assembly language).

Typical runtimes compare favourably with those of other languages
generally available on the Nova.

Enquiries are welcomed from interested users: please contact
Mr. R. E. Berry at the above address.

Yours faithfully,
al

[k

artment of Computer Studics
Bailrigg, Lancaster
Telepl Lancaster 65201 (STD 0524)

Dici TAL EquipMent PDP-10, DECsysTeEM-10, DecSysTem-20

Charles Hedriok (University of Illinoia) and hally Wedel (University of Texas)
independently report that the iamproved Pur=10 ooapiler announced by Nagel in Pascal
Hewsletter #6 will be distributed vy DECUS (Digital gquipment Computer Umers Sootety) in
“arlooro, Mausnonuocttn.

Die1TAL EquipMent PDP-11

we have beeni ‘hoping to hear [roa Stephen Sohwarm {coordinator of ULECUS SIG Fasocal)
regarding the progress of that group. We have not yet received the group's newsletter, In
view of the large nuaber of implementationa for the POP-11, it appears that coordination
is dJdesporately nesded, Anyone interested is endouraged to contact Schware at £,.I. OuPont
de deamours Co., 101 Beech St,, wilmington, OE 19893 (302/774-16069),

Kenneth BOHQOQQnil announced a Pascal ocaoqutlnd~llono -oftu.ro aysten . {(inoluding

squmner - through . the YCSD
~Conpilation - apeed is Y000

‘proccuuiﬁl'anu Briphics applications, It
i processes the &13. Ascrxr-:ommur ut..ﬂwlnm ‘St of ohar. All systess support
graphios display; keyboard; and filoppy disk. Poi~sore inforsstion ses Ken's article in
this 1issue, or oontact ken at Institute for Inforaation Systems, University of Califormia
San Diego, La Jolla, CA 92093 (714/452-4526),

There may be hope for UNIX users! {en Bowles (above) tells us that a compile and go
Pascal 1lmplementation nas been written by Ken Thoampson of Bell Laboratories. Can anyone
tell us wore? Also we have heard that #¢lerre Verbaeten and K.V, Leuren have an
implementation. Their address is Applied Mathematics and Programming Division,
Celestijnenlaan 200 B, 4-3030 Heverlee Belgium,

un August 24, 1976, Jeff Schriebman (485 Cory Hall, U. of Calif. Berkeley, 94720) wrote to
George Richmond (* who forwarded the letter to us on Fen., 10, 1977 *) that he has a Pascal
interpreter running under UNIX on a PDP-11/70. We have received no reply to a follow-up
inquiry (* Febn. 24, 1977 *). Richard J. Cichelll raeports that Charles J. Printer of the
University of California has a Pascal interpreter under UWIX, which has very tight oode.
PLEASE, can anyone help us track down these people or their iazplementationa?

Wiley Greiner (TRW, Inc.), in a letter dated March 11, 1977, menticoned an
implementation by Brian Lucas of tne liational Bureau of Standards which runs under DEC's
RSX11d (v6.2) and RSX1iM (v3.0). (* Come on Brian, don't be bashful. Please write to

us. %) wiley's address 1is bullding 90-2178, TRAW/D3SU, One Space rark, Redondo beach,
CA go2rs.
POP=11 PASCAL IMPLEMENTATION NOTE
P Y I T T Y Y YT Y P YT T T T Y T Stockholm
1977=02-09
1 IMPLEMENTOR
Seved forstendant
Agdress:
felefon AB LM Ekricsson
AL/ufe
$«125 ¢6 Stockhoim, Sweden ;
Phone number:
Sweden, U8 / 99 U2 DU until 1977-03-31
08 7/ 719 VU VO from 1977=046=01
e MACHINE
DEC=1U: crosscompiler that generstes code for
all PDP~11's,
POP=11: model 35 and up.
This version of the compiler does not
generate code for floating point hardware or extended
arithmetic., But the next version witl do so when en option
switch is set,
3 OPERATING SYSTEM
REX=11M, (DEC*10 crosscompiiler under TOPS~10),
Probably 4t is an easy task to replace the R$X
intertacing routines with new ones interfacing 00S
or RT=11, we do not olan to do thet work here.
Maybe routines to 1ntcr!|co with usx-11s
will be audc.ﬁ . * L
6s5+6 DlsTRlBUTlON,bOCUHEITA1IONIHAIHIENANCE

Not yet clear, but hopetully more intormation
will oe availabnle soon. A user manual., complementing
the Reports, §s under development,

8# Y311371SMIN VISV

LL6T ‘AVW

6 39Vd

RES IRICTIONS AND EXTENSIONS

Tne compiler is a modification ot the crosscompiler

trom Mr Bron ot Twente University of Technology.,

The Netherlands., Two major modifications have been

undertaken?

- the compiler generates standard object modules
the compiler gives full sccess to RSX file system

Tho following Ligst is mainly a copy trom Mr Bron's

contribution in Pascal Newsletter a7,

With regard to tne detinftion of Pascal in Pascal
user Manual ano Heport the tollowing restrictions hold:

- packed data structures are only implemented for
cnaracter arrays (always packed, two char's/word)
and tor boolean arrays (packing optional,
one boolean/bit). lhe procedures pack and unpack
are not implemented,

= only Local jumps are allowed.

- & pair of procedures, mark and release, to allocsate
and dealiocate dynamic storage.

fThe following extensions have been implemented:

function results can be of nonscatar type,

- arrays with unspecitied bounds { but specified
index=structure) can be used as tormal parameters
t0 procedures, allowing ditterently declared
variaoles or constants as sctusl parameters,

= &4 string parameter type has Leen 1ntoouced in whicen
one=dimensional character arrays or substrings thereot
may De passeq as paraveters, Such strings ano their
constituent characters are considered as "reaa only",

~ procedjures may be compiled separately.,

- separately compiled proceoures can be accessed
through a declaration with the procedure block
replaced by "extern"

SOURCE LANGUAGE

Tne compilers are written in Pascal, and both have
the same source coge exctept for two separately
compited routines. Tne crosscompiler is generatea
vhen the DEC~1U Pasrel compiler from Hamburg compiles
tre source, when it then compiles itselt the

. PDP=1] version is created,

ine size of the compiler is SUKwords ot code. In a

POP=11 running under HSX=11M V2 only 32 kwords are
available tor code and data. Througqh a slight modification
of the overtay loading routine of RSX=11M it has

been possible to segment the very recursive compiler,

It now tits 1n a 3¢ KWords partition ana uses about

¢ Xxworis tor coge lLeaving 10 Kworgs tor oata.

RELIAGILEDY

@00d. Tne reliability of the orvginal crosscompiler
was very good.

1 METHOD OF DEVELOPMENT

The crosscompiler tor PDP-11 running on DEC=10
produced by Bron et al was used as input, As mentioned
earlier, this compiler was moditied to generate object
code Linkable under R§X=11M and to give access to

the file system ot HSX=11M, When the crosscompiler was
finished it compiled i1tselt and the compiler was thus
transtferred to POP=-11,

The implementation ettort until now is about 5 manmonths.
To make use ot tloating point hardware snother two
manmonths will be necessary. Probably 8 new version
:nicn pertorms some optimization will be developped
ater.,

Dear sir:

At my installation, we are presently using the ElectroScientific
Industries implementation of PASCAL on three different PDP-11 processors,
all using the RT-11 operating system. These machines are a 16K 11/05,

a 28K 11/10, and a 28K 11/40 with FIS, Our applications are in speech
recognition, real-time simulation, and computer graphics using Evans &
Suntharlund Platufo Systama, Wa have found the ESI PASCAL to be much
faster than DEC FORTRAN, and very economical in core requirsments, Our
worst case benchmark involved a “"number-crunching" program translated almost
literally from FORTRAN-for this benchmark, the ESI PASCAL executed about 40%
faster than FORTRAN, while requiring about one third the core for execution,
Much of the core improvement is due to the small support package required
for ESI PASCAL, as opposed to the somewhat larger requirements of DEC
FORTRAN,

We have found that we can compile quite large programs even on
our 16K 11/05. We have compiled 3000 line programs in 28K on the 11/40.
At my request, since our applications involve graphics using programs
with in MACRO to expect FORTRAN calling sequences, ESI have added the
capability to declare procedures “extemal FORTRAN™, We have successfully
used this feature to communicate with the Evans & Suthland graphics software
in a production environment, ESI also offers an optional optimizer, and a
formatting/cross reference package,

Reliability of the compiler has been far better than the DEC FORTRAN
system which has been completely replaced at our installation, The vendor
seems to be responsive in terms of support.

We have ordered PASCAL for our XDS Sigma 9 and DEC 11/70 running
UNIX. I will inform you of our success with these implementations.

I am interested in implementations of PASCAL on DG NOVA, HP 21MX,
DEC PDP-12, SELS40MP,

Zay B, Curtis

P.O. Box 235
Moffett Field, CA 94035

8# YILLITSKHIN TYISV

AVHW

LL6T

06 39vd

University of llinois at Urbana-Champaign

DEPARTMENT OF COMPUTER SCIENCE
Urbana, lifinois 61801
(217) 333-4428 January 21, 1977

Mr. Tdmothy Bonham

Pascal Implementations

Univexsity Computer Center

227 Experimental Engineering Building
University of Minnesota

Minneapolis, MN 55455

Dear Mr. Bonham:

This letter is in response to your October 25 inquiry concerning the
University of Illinois Pascal effort.

Our normal procedure upon receipt of a specific inquiry for Pascal-1l is
to continue correspondence via a standard letter (see enclosure A). That letter
provides a rough description of our compiler and details the method by which a
"legitimate” party may obtain a copy. In particular, it is required that the
recipient agres to the conditions aet forth in Profsssor Snyder's letter (aee
enclosure B). The question of whether any specific usage is deemed "rescarch,
education or other legitimate purpose’ or whether it is deemed '"commercial" is
one that can be answered only by the University of Illinois Administration and/or
the National Science Foundation. .

The Pascal-1l compiler was developed by A. Ian Stocks and Jayant Krishnaswamy*
under the direction of the late Professor Donald B. Gillies. It was originally
intended solely for in-house use as both a systeus programming language and a
pedagogical tool. However, increased outside interest resulted in fairly wide-
spread distribution of various versions of the compiler. Consequently, we have
found it necegsary to freeze the distribution version as described in enclosure
A. In particular, our distribution version does not implement WITH, variant
records, arrays of records, procedures-as-parameters, and type SET.

In additm, we have made a number of extensions to the language which we
have found to be quits. useful. Most of these extensions are méntionad in [1].
s no mmun bcmi m: tar chm uunuom.
2 ;

Uitk ns. planat® to extend 1t of 8 implement it on
+ W6 heve word chat othm (basides $91) have transported

resent addresses: Professor A. 1. Stocks, Department of Computer Science, Univer-
sity of Southwestern Louisiana, P. 0. Box 4330, Lafayette, Louisisna 70509;
J. Krishnaswamy, Department of Computer Science, University of Illinois at Urbana-
Chsmpaign, Urbana, Illinois 61801

**Read : "plans which will result in and updntod'diutihutim\ m-m " We, of

course, are con vith unsponsored researchy which mhulux 1) implementing -

full Pascal; 2) Boy Campball's extendiag Pascal-11 o include "Path .
and; 3) ¢raneporeing 8111 wmum RT-11 lnd

Tet. Conneqmncly. C ' " higher) processor with 28K words of addresssble core storage, and either 1) s .

PSR S e gy B

Pascal-11 to RT-11 and DOS/V9.) Finally, we have no magnetic tape or RK style
disk facilities, and the clerical personnel who perform the distribution service
are trained to simply copy from one DECtape to another. Therefore, PDP-11
formated DECtape is our only mode of distribution.

Sincerely yours,
1]

NN ot S {-——-——~~

M. Dennis Mickunas

Assistant Professor of

Computer Science
MDM:clg

Enclosures

1. Stocks, A. I. and J. Krishnaswamy. "On s Transportable High Level Language
for Minicomputers,' ACM SIGMINI-SIGPLAN Interface Meeting: Programming
Systems in the Small Processor Environment, New Orleans, March 1976.

ENCLOSURE A
This letter is in response to your inquiry concerning our PDP-11

PASCAL campiler.

Our PASCAL~1l]l compiler end the associated package of run-time routines
operate wunder our own operating system, which grew out of DEC's DOS/VL. While
our PASCAL-11 system is not yet complete enough for widespread distribution, we
are happy to make it availsble on a limited basis to interested persons. Our
distribution peckege includes:

1) PASCAL-11 source of the PASCAL-11l compiler;

2) MACRO-11 source of the PASCAL~-1l run-time routines;

3} binary for both the compiler and the run-time routines, and;
L) binary for our operating system.

In case you desire to instell PASCAL-ll on your own version of DOS,
ve also provide a 1ist of DOS/VL modifications. We believe that these modifice~
tions are sufficient for adapting DOS/VL to PASCAL-11, but we can, of course,
meke no guarantees. We caution that these modifications are not sufficient for
installing PASCAL~1l on other operating systems, but your DOS expert should be
able to make the necessary nodiﬁutiann using our DOS/Vh modifications s guide-
lines. 3 P ¥

Hardvare requirements for emcutins the euq»:ller sre: & m—u}ao (ﬂ" ;

DEC RF-11, or; 2) a DEC RK~1l. In case you have some other aisk, your DOS expert
should h-vn little trouble replacing our d&isk a&river with your own. In additiom,
it is necessary that your system be able to read IECtspes, since that is our oaly
mods of distribution for the PASCAL-1l system.

The present version of our PASCAL~11 compiler does not implement WITH
or type REAL or SET, nor does it permit variant records or procedures-as-parsmeters.
Qur version is othervise essentially in accord with the Revised Report, except that
vwe have preserved EOL in lieu of WRITELN/REAILN, and we have incorporated soma ex~
tensions, including compile-time options; source level libraxy routines, snd overe
lays. Documentation for the compiler is, unfortwastely, very sparse at present,
but ve shall include in the distridution package all that is availeble.

The PASCAL-1l compiler vas developed st the University of Illinois at
Urbana~Champaign and is copyrighted by its Board of Trustees. This work vas sup-
ported, in part, by NSF Orant DCR 72-03740 A0l to the University of Illinois et
Urbana-Champaign. Accordingly, distribution is made to any interested persons or

8# Y3ILLITISHIN TVISV

LL6T 'AVH

IS 39vd

partien who {ritend to ure this software for "remearch, education, or other
legltinmate purposes.” ‘The NSF requires that we inform them of those receiving
this software and their intended uses of it. Consequently, if you are interested
in obtaining this software, please mail

1) three (3) DECtapes (These must be in PDP-11 format!);

2) @& statement of your intended uses;

3) one signed copy of Profegsor Snyder's enclosed letter, and;

L) » stamped, self-addressed mailer for returning your DECtapes
(total weight is about 2 pounds)

to

PASCAL-11

¢/o M. D. Mickunas

222 Digital Computer Laboratory
University of Illincis at Urbana-Champaign
Urbena, IL 61801

Upon receipt of the above items, we shall retum your [ECtapes with a
copy of our distribution package.

HewrLerT Packarp HP-2100

Mattia Hmeljak (U, of Trieste) wrote (* Feb, 5, 1977 *) to say that his group intends
to implement a P-Code interpreter in HP-Algol for the HP-2100. He asks that anyone else
working on an lamplementation for this machine contact him at Istituto di Elettrotecnica ed
Elettronica, Universita di Trieste, Trieste-Italy.

HONEYWELL SERIES 66

Janis Zeltins of Honeywell Information Systems, 7400 Metro Boulevard, Edina,
MN 55435 (MS~1104), informed us of the availability of documentation for the Honeywell
implementation running under the GCOS operating system, "A Pascal Product Brief"
{publication #AW66, free) is a 1 to 2 page marketing oriented plece. A fuller description
of the implementation is "Pascal User's Guide"™ (manual #AW65, $1.30; about 30 pages).
These are available through Honeywell Information Systems, Attn: Publication
Services MS-339, 40 Guest Street, Brighton, MA 02135,

1BM 360, 370

Obviously there is a crisis with IBM implementations (just as bad or worse than
PDP=11*sl). After having evaluated both the SUNY Stony Brook and the University of
Manitoba coapilers {(the two most widely distributed), and found them to be disappointing,
two new projects were begun, Albrecht Biedl at the Teohnical University of Berlin and a
group at Isperial College, London, independently embarked on new implementations based on
Pasoal P4. Dissatisfaction with the Stony Brook and Manitoba compilers exists elsewhere,
although a good report on Stony Brook's comes from David Gomberg at American University,
Washington D.C., and an expression of contentment with Manitoba's comes via the University
Computer Center Newsletter, U. of Southern California, Los Angeles.

pavid Gomberg reported to us on Feb. 22, 1977, that "anyone waiting for a clean
supported version of the HITAC 8800 Pascal for use under 0S/360" can stop holding their
breath. He received a letter from Teruo Hikita to the effect that they feel some
unwillingness to distribute the system formally because of lack of full support, I/0
routines coded in Fortran, lack of IBM compatible load modules, and inability to support
the systea "formally and continuously.”

it

Howevor, Jossph Mezzarobs, Villanova University (214/%27-2100, x66Y), reported on
April 16, 1977, that he recently coaxed a copy of the HITAC compliler from Hikita
running for 3 weeks under DOS. The I/0 routines are being rewritten in assembler,
Joseph is very happy with the asystem - it produces good code and has been
reliable 1in 1ta 1initial use by 60 graduate students (1500 jobs). HITAC Pascal compiles

twice as fast as PL/I and executes 5 times [faster than PL/I under DOS
Mezzaroba,

Currently we still nave the Tokyo (HITAC 8800) compiler, SUNY Stony Brook, U. of
Manitoba (no news for 8 months!), New Mexioo Tech., Stanford Linear Accelerator Center, U.
of urenoble, 0slo Heart Hospital, and now the U. of British Columbia
the other two European efforts and we have ten major implementations on the IBM 370!

~Andy Mickel

Dear Andy: -

for

This note vwill serve to describe our Pascal implamentation
tha 1IBM 370/168 running under the MNTS operating systen.

I've 2also enclosed a copy of our User's Guide.

1.

3.

4.

Mapes, eic.. of isplementors., maintainars, esc. .

professor Bary W. Pollack
Frofessor Robert A, Fraley
Departaent of Computer Scienca
University of British Coluntia
Vanccuver, British Columbia
Canada V6T 1WS

604-228-6794, €0u-228-3061

Bachipe. manyfactugker, etg.

IBN 370/168. The machine operates in wuniversity
environment with heavy background and moderate intaractive
loads. The translator should be compatible with most large
IBNM 360 or 370 series machines. Current developaent uses
the NTS oparating systenm.

gpsrating systeam, mipimal hardware gonfiguration.

Operates under the Nichigan Teraminal System, ATS, The
acnitor may be modified with minimal effort to run undar
vVs, ©S, =etc. The translator requires about 320,000 bytes
of core., Standard 0S obj2ct wmodules are ganaratad. An
obsolete 0S monitor is availabla; wve hope %o have it
updated to work with <¢ha currant compiler shortly.

Division of the compiler into overlays tor non-VH systenms
would be possible,

Betbed of dissribuxien.

The current version is available for distribution now.
Distribution will be via 9-track magnetic *tape. Costs will
be limited to postage (and tape purchase, it ona 1is not
supplied).

Dogumantation.
Documentation consists of a User's Guide containing a

cosplete description of the languaqe's departures from the
Jensen and Wwirth Pascal Usar Manual and Report.

implementation,

B# ¥ILLITSHIN TVISY

AV W

L/6T

¢S 39Vd

Maipiananca palicy.

A waintenancsz policy has no% yet bean decid=d4 upon., 1I% is
anticipated *ha¢ periodic upgrades and wmodifications will
be distribu*ad at least onca a year, Raportcd bugs will he
corrected as quickly as possibla with no-ification +*o
users,

Stapdazd Pascal?.

The compiler provides numerous extensicns and a faw
restrictions. A compiler option issues arror msssages whan
ron~-standard features arc used., A compl2te description is
contained within the documentation provided. 1A summary of
the diffsrances follovs,

Extapalons:

Strings are padded on *he right with blanks,

There is a "CASE" dafault label: wO©

Optiornal ":" allowed baforae "ELSE®,

"{,e.)" may be used instead of "(..., |".

The EQL character has baer retained.

"PACKED" is ignored,

Additional built-in funcontions:
#IN, MAX, SUBSTR (using constaat langth), POSITION
(provides direct-access 1/0) . I/0 intearface
functions and axtensions to RESET and REWRITE,
INSERT function for data-packing.

Input of character strings using READ,

Support of EBCDIC characters ~, 8§, and |,

Use %.,," for cosments,

“YALUE® section exists for variable initialization,

Hexadecisal integers supported.

PORTRAN subroutines =may be called. A return code is

available in the standard variable RCODE.

Direct access filas.

Bessrictions:

Sets currently limited to 0..31%,
. PROGRAN. statament not used.
~-¥ILES may not be components of other structurss.
- SEzpressiony.. <expressiond is not slloved in sets,
. IXPUTM is Lnitinllx EOL instead of the first character
: the fils. This is t¥snsparent whenr BBAD is usod.
txmsz 1: not im-nnud.

3

’f
" MeCarthy TP,
<% QR and AND lower precedence than relations;
+. %9sual® precedence usad throughoaut.
Séts over range 0..255.
Better control of input anb output formsats.

after

fho, DL 6800 1ip1¢ltatatioa. but it has been extensively

modified and improved, The translator consists of
approximately 8000 1lines of Ppascal code., The run-time
library consists of approximately 500 lines of Pascal code.
The @wsonitor (vhich contains the interface to the operating
systen) consists of approxisately 2000 1lines of 1BY

v

Asseabler G code. The ¢translation a3peed has not been
determined, but it seems faster than our Algol-W compiler,
The cods produced has bsen timed against Algol-w code and
is almost uniforaly 10-15% baetter. This is especially true
of any program using a large nusbar of procedure calls.
The cospiler compiles itsalf im less than 60 s2conds of
3707168 processor time.

9. Beliabiliry. eig.

The reliability to date has been excellent. A student
version of the translator has been running since September,
1976, with only one detected compiler srror. The nain
system version has been in operation since Deceaber, 1975.
All problems which have been encountered to dats hava been
corrected,

10. pathod of davelopment.

The original translator was developed by Wwirth and several
graduate students at Stanford University as a partial
re-vrite of the CDC 6400 version imn 1972, The current
translator and monitor have been extensively modified, a
run~time likracry has been implesented, and a post-wortes
syabolic dump package has been developa2d. The tramslator
has bsesen under continuous development at UBC since
Deceaber, 1975, by two faculty membars and one graduate

Tt - maja &ﬂ(e Aﬂ%vé/

Feb, 4, 1977 H Follack & Robert A, Praley

UNIVERSITY OF BRITISH COLUNBIA
Department of Computer Science
2075 +esbrook Place
Yancouver, British Columbia
Canada V6T 1S
Pascal/360 now available to DOS users

The Stony Brook Pascal/360 compiler {announced in SIGPLAN Notices,
Feb. 1976) has been given a DOS interface. It has been installed and

"tested on an IBM 370/135 running DOS/VS release 32. This version of

the compiler fs identical to Pascal/360 Release 1, Update 3 (0S) except
for the operating system interface. At present, the main storage
requirement is a 150K partition. A small-partition edition for D0S/360
users {s planned for swmmer, 1977 release.

The distribution tape, installation instructions, and copies of

‘all future maintenance updates and documentation are available for a

one-time fee of $175. A User's Guide fs also available in quantities
at $1 per copy. For conp[ctc infornction«!pieasc write to:

Pascal Compiler Project

Dept. of Computer Science

State University of New York
at Stony Brook

Stony Brook, New York 11794

8# YIL113TSMIN VISV

LLBT AVH

£S5 39vd

1B 1130

0. Lecarwe wishes to apologise for an error in fnsus 40 regarding the 1m4 1130, He
tncorrectly inforaed us tuat an {mplementation was coapleted at the dniversity of
weuchate!. Instead, ne says, a Pascal-3 coapiler (not interpreter) has oeen iuplemented
for tne 1130 by unelaut 3andaayr, wev Tecanicun, Cu-9470 buchs, Switzerland.

ICL 1900 seRIES

Tae curreat ICL 1400 series coapiler was developed over the period 197076 by Jim
welsa, Jolun quian, and nathleen jlesnane, at the Departueat of Computer Sclence, yuceen's
unlversity, celfast vi{ Yoo dorthern lreland, U.K, Inis project was a coaplete rewrite of
tiue old ICL 190D coapiler (fawous .for being tne first to exist outside of Zurich).
laproved code and internal Jesign, iaplenentation of the revised report, and {inproved

tagpnostic facilities were goals achleved by tne new coapiler, known as the 'Ix2. The ICL
g cowpliler 1s distributed by Jim to nearly 50 sites, wostly within the u.<.

Its perforaance coapares very favorably to Fortran on tine ICL 1900. The compiler
requires ncarly 324 to run and nas veen installed under various operating systems: ceorse
3, weorge 4, wxeocutlve, GAKi0P, and CoOP.

Ine noal fnteresting feature ol tae K2 compller from an teplementor's point of view
ia thay 1t bhaa been desined %o vLe ported to other wacuines, JSpectfically, the semantic
analysis and code geaeration parts nave been cleanly separated. lhus it can be used as a

vootstrap coapller Tor other machiqzes amd can be Yicened to the faseal Trunk coapdtere,
{Jee the 100G 2200 acct fon below.)

Ofavnostie enbanceents to the S ware provided by vavid watt and el pFiatlay,
Coaputer Selence Lepartacat, dotverstty of olasgow, dlasgow dle ded Scotland, U.x, ineir
diagnostivs systes {ncludes a post-.uortes Jump with array, record, and file-status

variaoles displayed; an execution profile snows the nuaver of times each line of a progran
ta executed, arnid retrospective and torward traces of the exact source statements executed,

bocunentation {(in tne fora of a supplenent to the revised report) for the 1CL 1900
implenentation froun ulasgow (dated reo. 23, 1977, 27 pages = very clearly written)
indicates that the ICL 1900 j-oit character set is used, sets may have U3 elements, files
are not al!lowed as components of any structured type, and non-diseriminated variant
recorus were removed.

~Andy ickel

ICL 2900

Une project oased on the ICL 1900 YK2 compiler labove) is to produce a coapiler for
tne upper 1CL 2900 series gaenines (2973, 2930) ~ar tne uUniversity of Southampton,
supported Doy Lavid tarron, Judy -ullins, Jonn doodson, ‘iike dees, and Andy Sehulkina. The
coapiler 1s Yargely uelay weitten oy Jobn Heynolds withn tine aid of Jules Zell, ooth of the
laperial College, vepariment of Cowputing and Control, London Sw?, U.k, John Heynolds
rewrote the code Jenerators for tne 2900 which is stack-oriented and possesses a
coapletely aifferent arcnitecture than the 1300 series machines. Poor computer system
perfornance of tne 297) at Southampton led to the decision by John to develop the cowmpiler
on the Contro! pata 7500 at the University of London Computing Centre, making use of Urs
Aunann's rascal 6000. After compiling Jin welsh's compiler with Urs Ammann's compiler and
rixing .tne {only!) ten errors wnich resulted {out of 3000 lines of code) John was avle to
generate assemoler for tne 2y7J which ne ported to Southampton and successfully loaded and
ran test programs. John resarxked that tae eveat of sucessfully soving to the 7000 "said
sonething about eacn of urs Ammann's compller, Jim Welsh's coapiler, and Pascal the
tanjuae,”

To circuawent an unwieldy IUL operating system on tie 2979, the University of
cdinour:n scientific jovuver will prouvably pe used to narbor this Pascal coupiler.

~Andy tickel

ib: vavid Jos! in of Jussex dniversity Computer Centre, ralmner, Srighton, Sussex, U.{., is
coordinating tals coasortium of universities by acting as a clearinghouse for all IoL
conpilters. anyone naving icu news snould forward it to vavid whno is i close contact with
“ne rascal dewsletter,

INTEL 8080

Feb 22, 1977

Mr. Anoy Mickel

rascal Implementations

University Computer Center : 227 Exp Engr
university ot Minnesota

Minneapolis, Minnesota 55455

Lear Anay,

Tnis letter is in response to our recent telephone conversation
regaraing sequential pPascal for the Intel 8088A microcomputer.

The sequential pascal compiler, written by Per Brinch Hansen
ana Alfred C. nartmann of Caltech, generates code for a virtual
macnine. I nave simulated the virtual machine with a real machine,
the Intel Intellec Microcomputer Development System (MDS). My PAS80
program, which is the implementation of the virtual machine, is
written in tne high level language PL/M-88. Emulating a 16-bit
virtual machine using PL/M-86 on the 8-bit Intel B8@80A certainly dia
not proauce a high-speed real machine. However, I feel that compilation
ana exccution speeds are tolerable for the purposes of beginning work
with rascal on the BBBOA,

At this time the 7 pass sequential Pascal compiler has been
successfully self-compiled on the microcomputer (9,835 lines).

I will use the checklist proviaed in the Implementation Notes section
of your newsletter to provide you with further information:

1. 1lmplementor:

Thomas A. Rolancer
lbl2 Smith Ave.
Lampveli, Ca. 95068
(4v8) 378-5765

Listributor:

INSLTE

Intel User's Library
Microcomputer Division
3865 Bowers Ave.

Santa Clara, Ca. - 95851
(408) 246-7501 x2948

2. Machine: 1Intel B9B@A using the
Intel Intellec Microcomputer Development System

3. wuperating System: Intel MDS ISIS-II

flaraware Configuration: 64K Bytes of RAM
bual Floppy Disks

4, Listripution Format:

The software is aistriputea on two soft-sectored diskettes
containing: .the PAS8@ program, the sequential prascal compiler in
virtual machine code form, the PL/M-88 source code for PAS80,
ana the source coae for the entire 7 pass sequential Pascal compiler
written in sequential Pascal.

8# YILLITSMIN T¥ISVYd

‘AVHU

L1661

hg 39Vd

1.

Documentations

PAS8# aocumentation is supplied in the form of a short User's
Guiae, syntax graphs, and the source coce for the virtual machine
imp lementation and the compiler.

Maintenance Policy:
NONE, however bug reports will be accepted.

Future Development Plans:

The initial version of PAS8@ does not support floating point
operations. However, all of the requireo hooks have been incorporated,
tacilitating the implementation which is currently in progress.

work is also in progress to reauce memory requirements from 68K
to 32K bytes,

Direct machine coae generation for the Intel 8088A is being
consicerea.

The possibility of a concurrent Pascal implementation is also
unaer consideration.

rascal Implementation:
Complete sequential pascal, as described by Per Brinch Hansen, has
been implemented with the exception of floating point operations.

Compiler Characteristics:

-Interpreter, written in pPL/M-88, .
1300 lines of source coade,
10K bytes.

-Speed,
38 lines / minute,

Reliability of Compiler:
Unknown, however it will self-compile and has been used success-
tully by students, providing reasonable aiagnostics and error recovery.

Methoa of Development:

The virtual machine implementation was coded in PL/M-8f and then
oebugged using the virtual machine code files of the sequential Pascal
compiler itself %o compile amall test progranms, und then finally
the compiler: wak self-compiled. T4

The implemefitation thuircﬂ about 3 lln-nontnl-ot-ovcninqn and
was accomplished in my spare time. It ocould have: bocn conpleted in

‘about 2 1/2 wesks.on a full-time basisi.

I was familiar with the process of 1mplencnt1ng the virtual
machine from preévious experiences on the PDP 11/4@ unaer RSTS/E and
with tne TI 9988. Creait for the ease of implementation is aue to
Per Brinch Hansen who developed the virtual machine.

In summary, while compilatxon ana exegution speeds are slow,

this implementation coes provide a tool which can be usea for further
Pascal aevelopnenti on microcompute:s. 7,

Thomas A, Rolander

Pater Zschmaister

Microcomputer User's Group (UMMUG)
m UNIVERSITY OF MINNESOTA Department of Electrical Engineering

TWIN CITIES 139 Electrical Engineering
123 Church Street S.E.
Minneapolis, Minnesota 55455

IMPLEMENTOR

Pater Zechmelster
Microcomputer User's Group (UMMUG)
Dept. of Electrical Enginasring
123 Church Straet S, £.
Minneapplis, Minnesota 55455
I am responding to the reguest of new lmplemwntors. If anyone
nesda more specific infaormation pleass write me.

MACHINE - Intsl 8080 8-bit microprocsssor
The target machine for this implementation is an Intel B8-bit
microprocessor. With easy modifications it can be adapted to run
on most microprocessors.

OPERATING SYSTEM AND HAROWARE CONFIGURATION - Target Machine

The compilsr includas a high level operating system which
intarfaces between the user, softwars, and hardware in a simpls
but powarful syntax., The minimum configuration consists of a
consale 1/0 davice (TTY), sbout 16K memory for the compiler to
reside in (Not yet completed. If the cross compilsr is used only
the 0S5 is nesdeds 2K memory ¢ users program.). Note that the
compiler, user programs, and 0S5 may reside in ROM, since code is
seperate from the varisble space.

METHOD OF DISTRIBUTION

Nome at this time but possibly late thie summer,

DOCUMENTATION AVAILABLE

Being worked on.
MAINTENANCE POLICY

Baing worked on.
STANDARD PASCAL

This implemantation, which I call Tiny Pascal (TP), may seam
a little barbaric compared to Pascal 6000, but this compilar was
written with the microcomputer in mind and is an improvement in
software for the small computer user. I would also like to add
that this compiler (system) represents the minimal language and
is meant to be » systems implementation languags as well as a
low level programming language which can be expanded with minimal
effort, The complex data structuras and verisble types were left
out of the compiler in order to fit the cémpiler on a micro 1na
reasonsbly seell memory. Tha data types may be added in a futurs
Extendad Tiny Pascal (ETP). Also thers sxists the hootstrap
compiler which is being used to generate TP and the monitor routines
(all written in Tiny Pascal), and is written in Pascal 6000 which
produces 8080 code,

8# Y¥IL13TSHIN TVISVd

LL6T AVM

TELT

IMPLEMENTATION

This is a trus compilesr that producas 8080 coda. The Pascal
6000 bootstrap compliler is mround 2500 lines long and loads in
about 14K. The TP compiler is arpund 1500 lines long and loads
tn about 14K (Not yet finished.)}. The compiler route was taken
because an interpreter system is too slow for most real-time lab
situations even though they are smaller. This is also an excellent
languaga for hardware design by manufacturaers, allowing hit
fiddling but yet still a high level language in a reasonable
amount of memory. (% The cross-compiler runs at 2400 lines/minute

on a CDC 6400, *)
RELIARTLITY

The reliability of the compiler is excellant, an efficient
register mapping algorithm is incorporated into the compiler.

METHOD OF OF VELOPEMENT

The original compiler was developad from PLO (Taken from the
baok Algorithms + Data Structures = Programs by Niklaus Wirth,),
A conalderabls &mount ol modlificatlons was done to implament
variable types, Pascal statements, code generation, and register
mapping.

The TP compiler (bootstrap) currently produces good runnable code but
documentation and a few loose ends remain to be taken care of. 1 am
currently considering the writting of Modula for 8080 hased
microcomputers, since TP could be used as a starting point.

Sincerely,
/)Q/tl/\. }Lq,jvw\ﬂuxl/\.

Peter Zechmeinter

INTERDATA 4

Jean Vaucher of the University of [ontreal has informed us in a letter dated pec. 13,
1976, that the Interdata 4 project there has been discontinued because of the availability
of Pascal on other macnines,

MotoroLA 6800

ark Wustad nas provided us with some changes (received April 4, 1977) to his notice
which appeared in Pascal Newsletter #5. Under Checklist point 7, he 4indicates that the
following features nave been added or restored: case statement, variant records,
enumeration types, for statement, the type real (as a four byte quantity), and an exft
statement (whizch returns froa a procedure or function)., Mark 1lists the deviations from
standard rPascal as being:

1. No declared files; gzet, put, reset, and rewrite are not supported,

2. The with and goto statements are not supported.

3. The standard procedures sin, cos, arctan, exp, ln, sqrt, pack, and unpack are
not supported,

. fne case statement has an optional else clause.

. Tne predefined procedure exit is non-standard.

(S

Nark also says that the compiler code occuples about 19£-20{ bvytes, while his U-CODE
interpreter takes about 3K (including a Floating point package). He is currently working
on optimization features for the compiler.

NAaNoDATA GM-1

o g Ref: 6201.DMH-016
JRwW)

17 March 1977

Implementor: Dennis Heimbigner
TRW DSSG
Mail Scation: R3/1072
1 Space Park
Redondo Beach, CA 90278
(213) 536-2914 or (213) 535-0833

Machine: Nanodata QM-1 with (minimum)
256 words nanostore
8K words comtrol store
60K words main store
9755 55 megabyte disk
TASK version 1.04.02 or later
PROD version 2.04.0! or later

Optional:

Card reader
Printer (highly desirable)

Documentation: a. Brinch Hansen's SOLO manuals (not available thru TRW)

b. Short machine readable document describing the
implementation and ways to modify it.

Reliability: In-house use has been light but the system has been good.
to the extent we have used it.

Method of Development: The Concurrent Pascal system kernel was
prograsmed in micro-code. Some care was taken to insure
that the QM-1's virtual machine was compatible with the
virtual machine defined by the PDP-11/45 kernel. Please
note that I did not implement a PDP-11/45 emulator. As
a result, virtual code object files (e.g., type SEQCODE
or CONCODE) which run correctly under the PDP-11/45 system
should run under the QM-1 system. The reverse is also true
for programs which do not use the fact that integers on the
QM-1 are 18 bits as opposed to 16 on the PDP-11.

The kernel was micro-coded in about 6 months, from January
1976 to June 1976, on a part-time basis. Some one half
of that time was spent on the I0 drivers.

Speed: Appears to run at sbout one-third the speed of the PDP-11/45
syetem. I believe that a modest programming effort could
achiave parity in speed.

Distribution: Release by TRW 18 currently under consideration.
Inquiries are welcome.

Sincerely,

JZ:) eiﬂflA,L;ﬂ K%Z4?j;1°\,£/ﬁﬂyz4«121

Dennis M. Heimbigner

DEFFNSE AND SPACE SYSTEMS GROIP OF TRW INC o ONE SPAGE PARx AFOONDO BEACH € A iANTIA 00278 « (213] 535 4121

S# Y3LLITSKHIK TVISVd

‘AYW

L/61

99 39Vd

Norsk Data NORD-10

A first version of PASCAL is now running on the NORD-10 under
the MOSS operating system, This note gives a short
introduction to the PASCAL system and how to use it.

~ NORD-10 PASCAL

“ The compiler has been developed ftoa the P—PASCAL conpilcr by
;eh' following gtonp: ’ : : .
£ ¥
Andora rjcldsq-ntd

Petter Gjerull

Stein Giessing

Jan Husemoen

Ketil Moen

Terje Noodt

" The inplcnnntug;oﬁ s _described in “Rapport om implementering
v PASCAL pd NORﬁ‘iO"yvnlverlity ot o.lq, Aptll 1976. +

’!hc compiler utilises nhc 2-
“ {8 possible to ruh 64K programs. “with 64%
" wetsion compiles to myabolic assembly codli, 8o thatia compiled
program must be sssembléd by mm bmu% it can w exgduted.

Non=-implemented featurea

Compared to the full PASCAL language, the following are the
main restrictions in NORD-10 PASCAL:

i. packed is not implemented (the compiler does however
. accept the tyhhol‘?hcxlbl. i .

The type ;;c Aégnbt 1nplen6ntbdj

. sre not. lhp aannt.d. ; ;a;

Range and lndon chcckinq ‘are HOt 1lp!cncntod.

5. Arithmetic overflow is not checked, -

After the compiler ‘has been loaded it will ask ihe user to
specify which logical units are to be used for input, 1listing
and compiled code. This conversation takes the following form:

ot data. The present

INPUT =
<specify octal unit number of source code file>
QUPUT =
<specify octal unit number of listing file>
PRR =
<specify octal unit number of the file where compiled
code will be written)>

The files should be opened before activating the compiler, but
it is also possible to exit from the compiler by CTRL A, open
the file, and then continue with the)GO command.

When compilation is finished (signalled hy right parenthesis),
the file containing the compiled code can for instance be
saved for later use. To execute the program, go through the
following stepss

1 Open the compiled code file with logical unit 3 (if not
already open on this lun).

2) *LINKP

3)60 p

NB:1A PASCAL program will store some of its data
at high adresses; Thus a text inout for
diting will not bq preservod thzouqh 8 PASCAL
conptlatlon or oxcﬁution of 8 PASCAL program.

The compiler recognizes the following options (placed within a
comment and preceded by $)t

[of produce code ~ default is off
T Produce tables of variables - default is off
L Produce listing -~ default is on

I a PASCAL program the programmer can use the following file
names:

INPUT (default input file)

OUTPUT (default output file) 0
PRR : N, - R
PRD '

The files that are used should appear in the program heading,
as f. ex.s

PROGRAM PROG (INPUT,PRR);

Before dats access to & file the prcgtnn must call
RESET (<file nauo)) . <.

for an input file, and
REWRITE (<file named)

for an output file. These calls have the effect of writing the

filename followed by an equal sign to the terminal, whereafter

the logical unit number (octal) of the file can be specified.

8# Y3IL13TSKIN VISV

LLBT ‘AVM

LS 39vd

For the files INPUT and OUTPUT the calls to RESET and REWRITE
are done automatically if they appear in the program heading.

Machine dependant characteristics

1. A set can have up to 64 elements.
2. A procedure cannot have more than 253 words of local
variables, including parameters, but excluding record and

array variables.

3. An inteqer variable occupies 1 16-bit word, a floating
variable 3 16-bit words.

4. A string can have a maximum lenqth of 16 characters.

Improvements and_changes

1t is expected that the PASCAL system will be improved and
changed freguently in the near future. A description of any
chrange or improvement will be written on the file *PASCINF,
which may be inspected or listed by the PASCAL user.

Questions, comments and error reports are invited, and can be
given to any member of the PASCAL group.

Terje®s address is Computing Center, University of 0slo, Blindern, Oslo 3, Norway.

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SIEGE: GENEVE/SUISSE

CERN LABORATOIRE | Andy Mickel

PASCAL Ugers Group

UCC: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 5545

U. S. A.

Adrasse postale / Posial address

1211 GENEVE 23
SUISSE / SWITZERLAND

Votre rélérence
Your reference

Notre rétecante

Ourreterence PS/CCI/DB/afcs Geneva, 19th January 1977

PASCAL NEWSLETTER

Dear Andy,

I am pleased to announce the successful implementation of a

Standard PASCAL compiler on the Norsk Data NORD-10 computer (running under

SINTRAN III o/s), by myself and my colleague Robert Cailliau. We developed
our compiler from the Zirich P4 code compiler, first assembling the source
P4 code into relocatable binary P4 code and then interpreting it as
efficiently as possible by an assembly code program. It is a great tribute
to Professor Wirth and his team at Zirich, who have produced s most excep-
tionally concise d;scription of the implementation procedurse and a very
readable compiler written in PASCAL, that we were able to implement our
system in about 2 man months. Apart from a small problem with the character

set {(why do CDC have to be different to everybody slse?), the implementation
went like a dream,

The very professional polish to the compiler and its documentation,
plus experiance with its use, indicate that the compiler itself is sxtremely
reliable, and since our sssembler/interpreter is very simple in terms of
coding and has successfully compiled the compiler, we have considerable faith
in our system. Naturally, it is not ultra-fast, but nevertheless takes only
15 minutes to compile the compiler, which for a 16-bit minicomputer with

2 usec cycle time is not too bad.

Naturally, anyone is welcome to receive & copy of our system, although

the NORD-10 is currently used exclusively in Europe.

A quick word on the PASCAL language itself - I feel that when
Professor Wirth stopped just short of creating the long sought after "obvious"
replacement to FORTRAN as the atandard language, he missed & great opportunity.
Naturally unable to ba the perfect all-time languags, it does have some slight
drawbacks (frequently discussed in this newsletter, and in particular no interface
to external routines), most of which it would seem could be relatively sasily
overcome, but which, however, do make it more difficult than it should be to

persuade users to take it up.

Anyone interested in our PASCAL system can contact :
David Bates
PS/CCI Group

CERN, 1211 Geneva 23
Switserland (t&l. 41-98-11)

Sincerely,

L é»ﬁ)[?x{bzﬁfizé;

David L. Bates

g# ¥ILL13ITSKHIN TVISY

‘AVU

L4671

85 39V¥d

s e by o s . . -

SEMS T1600 /7 SoLAR ‘ SEMS T1600 / SOLAR PASCAL IMPLEMENTATION

BCOLE NATIONALB SUPERIEURE DE LA METALLURGIE '
ET DE L/INDUSTRIE DES MINES DE NANCY 1: Implementor : Alain Tisserant

Département Informatique de 1'INPL
Ecole des Mines

Parc de Saurupt

54042 Nancy c.dcx FRANCE

1o February 2, 1977 Tel.: (28) 51 42 32

ECOLE DES MINES, Parc de Seurupt 34042 NANCY CEDEX TELEPHONE (28) 51.42.32
TBLEX : ENSMIM 830661

amain

2: Machines : SEMS T1600 and SOLAR 16/05/40/65

PUG . ' 3: 05 : BOS-D
¢/o Timothy !onhlm : Hardware required : MTS16
Untversity Computer Center g FHE or MHU disk
227 Experimental Engineering Bullding Lo
" Minneapolis, Minnesota 55455 ‘
co o USA R

16 K words of core memory (minimum)

4,5,6 : Compiler not yet available, Will be distributed
by TRIA.

s)) 7: Fully implements standard Pascal; also compatible with
Dear Tim: - the IRIS 80 Pascal compiler,
’ Its extensions are character strings
LOOP ... EXIT ... END statement
1/0 for sets and scalars symbolics
It allows also separate compilations, insertion of ASM or
Fortran routines, and sets of any interval of integers.

As announced to George Richmond we are (still) working

on dimplementing a Pascal compiler for the SEMS minicomputer
series. To answer your 10 questtons see uttuched 1mplcmentation
' not1cc. .

8: Pascal fs compiled in two passes, with intermediate language
n thil Pf°JGC‘ is writen in use. Of course, compilers are written in Pascal; the

ad- 1t dtioctly only to people intermediate language 1s an adaptation of P-code for

g copy- Of 1t for your own use. minicomputers. This implementation provides a fully
transparent virtual memory.

docuncntatv

§Itt¢? tb

As all the &
trenchk, we |
who ask for’

Yours sincerely, 9: Reliability: expected to be excellent!

10: P-code has been adapted for non-stack, 16 bits words,
based addressing and accumulator machines. An automatic
segmentation mechanism will allow compilation and execution
of large programs {such as the compiler) with small
memory requirements.
First pass of the compiler is parametrizable, but
second pass must be hand rewritten for each implementation.

S# YILLITISHIN TVISV

LLBT ‘AVN

65 39Vd

S1eMens 4004, 7000 series

SIEMENS PASCAL BS2000 PROGRAMMING SYSTEM.

A PASCAL Compiler for SIEMENS 4004/151 and all SIEMENS
series 7000 installations running under operating system
BS2000 has been developped by Dr. Manfred Sommer

(Dept. D AP GE - SIEMENS AG - MUNICH - GERMANY)

on the basis of the ETH P4 Compiler.

The Compiler may be used in an interactive Edit, Compile

and Go environment, as the Compiler produces code that

may run without relocation anywhere in virtual memory.

The interactive environment is provided by a PASCAL program
'‘dialogue’' which invokes the Compiler and/or generated pro-
grams by an additional standard procedure :éxecp (i.e. invoke
PASCAL program). This procedure may be used by all PASCAL
programs and supplies the possibility of a nested execution
hierarchy of PASCAL main programs.

The code produced by the Compiler (the instruction set used
is almost compatible with IBM 360/370 series instruction set)
may be put from virtual memory into a savefile. This savefile
may be reformatted by a PASCAL proeram so as to bhe submitted
to the system linkage utility routines.

The Compiler does some localized optimizations with the

aim of producing a compiler suitable for the compilation

of application programs. The result is that the code produced
seems to be much faster than the code produced by the standard
Fortran compiler.

The compilation speed is rather fast averaging 4o lines per
second on a 4004/151 and more than 100 lines per second on

a 7000/7.755.

The Compiler supports the language standard PASCAL.

File handling is fully implemented by the sequential file
access method. Work will be done to support also the

(direct access) indexed sequential file access method.

The predicate packed of arrays , records is ignored

as it would not change much on a byte machine.

The procedure dispose is replaced - as in all P-Compilers -
by the procedures mark and release.

Global labels may only be used to get back to the

main program.

There are no limitations imposed by the compiler.

Additional standard procedures are provided to make
operating system services available with the aim to make

the compiler suitable for the compilation of system proprams.

There Is the possipiliity to interact with the operating
system by calls of additional standard procedures.

The system seems to be as efficient and reliable as
PASCAL systems are usually.

There is a users manual - written in german language.
For the conditions of availability contact the author.

The Compiler has been developed on the basis of the ETH Pl
Compiler. This Compiler has heen extended to process full
standard PASCAL with some typical modifications (i.e.
mark/release, case ... else, variable string assignments
and comparisons). The character code is EBCDIC, the setsize
is 256 allowing for set of char. The code generation is
done on the basis of the intermediate P-code at the end

of each procedure trying to do some local optimizations.
The code is generated into virtual memory and may be

executed immediatly or put into a standard module library.

For further information contact

Dr. Manfred Sommer
SIEMENS AG
Department D AP GE
Postbox 70 00 78
D-8000 Muniech
(West Germany)

The efficiency of SIEMFENS PASCAL BS2000

Tn N. Wirths: "Programming langunpges...." (Berichte des
Instituts fir Informatik der ETH Zurich Nr. 17) there is
a list of programs for comparativestudies . These programs
are measured on a CDC 6400 Scork 3.4 installation, assumed

to be roughly equivalent to a 370/155 by a remark in the
same paper. This set of programs was run for comparison
on a SIEMENS 7.755 under BS2000 operating system, assumed
to be roughly equivalent to a 370/155 in turn.

8# ¥31137SMIN TVISYd

‘AYU

L[61

09 39vd

Results are:

CDC 6400 SIEMENS 7.755
SCOPE 3.4 BS2000 V 3.0

1. Powers of two 0.813 0.883

2. Palindromes o 5.223
3. Quicksort. (different test data- . :

intsize). e) ; 3.985

4. characou ero seconds per che 68 82

5. numeri¢i nput v ‘2.5H1

output T'2.260

6. Queens 1.009

7. Prim 3. 1,061 1.08%

8. ancestor &) build matrix 0,291 0.267

.. B) evaluate ancestors 1.667 . 1.569

‘o) output matrix : 0.578 0.614

9. ancestor<S’ - a) build matrix | ? 0.084

setsize s 100 b) evaluate ancestors S 0.322

’ o) output matrix - P 0.627

Programs 1,4,6,7,8 indicate that the times used are

indeed roughly equivalent; 3,9 are not comparable; the
different values on program 5 are probably due to a different
file structure; and program 2 is assumed to be an example

for the term "roughly equivalent" - it is not known why

it behaves aifferent from program 7.

It should be noted that BS2000 ia a wvirtual memory operating
system and paging interrupts lead to different. execution
times of theé same program in the order of 10 %.

On the other(ﬂiﬁqathere are ¥31i11 some rinal'obtimihations
in the code generator not yet implemented = it is hoped
that the times will be better by a an order up to 20 %

as soon as those optimisations are ready.

The compilatién of the compiler yields a perrormanai of
90 lines / ssc¢ond.

There have beeh some tests on the length of the sequence
of instructions for calling "Ackermann". The STEMENS
compiler produces 15 instructions needing 52 bytes of code.

Texas InsTRuMENTs TI-ASC

vouglas S, Johnson, Advanced Software Technology Dept., M.S. 295, Texas Instrusents,
vallas, Texas 75222, tells us that a superset of Pasca! called POL is 1nplemented on the
TI-ASC. Through other sources we nave learned that PDL was developed using a Pascal
cross~coapiler running on a Control Data 7600 which produced code for the ASC. POL was
developed for a Ballistic idissile Defense Agency project, and is described in the article:
"An extendable approach to computer-aided software requiresents engineering® by T.t. Bell,
D.CE Béxler. and H.€. Dyer, IEEE Transactions. ca Software &Englaeerling 3 (Jan., 1977),
pp U49-50. o

Texas InsTruments T1-990, TI-9900

_Douglas Johnson (adove) also reports that there is a Pascal oross-compiler which runs
on an It 370 and produces codes for the TI~990 and the TI-9910. Several peopls have told
us that TI nas developed a native-~code compiler wnich runs on the 990/10 under the DX10
operating systen.

A very different implementation for the T{-9900 (a 16=-bit micro), MICROPASCAL, is
notable for being a stand-alone turnkey Pascal machine with bundled software and hardware.
In addition to the materials printeg here, tne laplementors sent us a fairly goodesized
manual, wmostly 1n (erwan. Deviations from standard Pascal appear to be: files, with and
30to statements, label deolarations, and procedures/functions as parametera are not
supported, Sets of 54 oharacters are supported.

We present ourselves:

MICROPASCAL

1.) the implementors are:

H, 8chauer, R. Nagler, A. Szer; Institut flir Informationssysteme
1040 Wien, ArgentinierstrasSe 8, Austria, Tel. 65 87 31/313

the distributors are:

ECO-Computer GesmbH&Co Kg (Fa. Langschwert)

1010 Wien, Tuchlauben 14, Austria, Tel. 63 35 80

2.) our implementation is called MICROPASCAL

3.) the minimal hardwars configuration is the microprocessor
TI 9900/4 {Texas Instruments), a mark-sense card-reader and
& line-printer (with interfaces). You need no operating
system to run the compiler.

4.) only the whole gystem is selled(hardware and software) and
costs 200.000.~ 88 (Austrian Schilling).(about 1500 US 8).

5.) the system will be ready for sale in summer 77, we intend
to make more of it and we would like to accept bug reports.

6.) documentation is available in form of a supplement to the
PASCAL-~Report

8# 43IL1ITSHIN VISV

LL6T "AVH

19 39vd

7.) it fully implements Standard PASCAL beside a few little things
caused by the hardware configuration (see documentation).

8.) it is a portable compiler-interpreter system which saves
memory and is very slow compared _with other systems;it is
written in PASCAL and machine-code, 3000 source lines, 12kROM
words, no external memory .

9.) the reliability of the system is excellent

10.)it was written in PASCAL and bootstrapped to the microprocessor.
it takes three month to implemant it on any microprocessor
with no special experience of the implementors.

NICROPASCAL t8 a system that pernmts t).e tianslation and szecution of PASCAL
progroms on a microprocessor. It consiste of a microprocessor, mamory for the operating
system and. the user programs and two interfaces for tnput and output. The main purvose
of the system Ls to support programming education.

Bastic concapts: the compiler translatae the source program into an intermadiate
language rapresentad as a traes, where each node represants one declaration and each
leave corsists of the intarmediate code of a PASCAL block in reversed polish notation.
This tree is the static information of the program. The compilation does nct excesd the
leval of syrztrxc‘tic decompecsition defined by the syntar diagrams tn the PASCAL rsport.

At exzecution time the code is interpreted by atd of the runtime stack which provides tire
dynarte tnformaticn. The runtime stack conststs of parcmeters and local data cf all the
cetive subroutines. Tha interpreter performs all context-sensitive checking at the eze-
cution time. Tha intermediate language ts compressed by using a numeric code of variatle

length to represent the identifiers: those which are frequently used are represented

by short numbers. Sirce any information concerning the identifiers s stored in the nodes

of the tras, the intermediate code is not redundant. The interpretar is '
t.e8. in the intermediate coda all operators are calls of subroutines of the interpreter.

Features of the system:

-~ tt supports portability: the machine-independent parts of the system, t.e. the corpiler
and part of the interpreter are in the intermediate language (and interpreted thamselves).

Only the nucleus of ths interpreter (organisation of the runtime stack and the ezecution

of operations) is machine-dependent and therefore handcoded.

- extremaly low requirement of storage (12K ROM): the same interpretar {s usad to control

the coempilation, the machine-indeperndent part of the interpretation and the ezzcution

of the user program (the problem of runtime efficiency wis no comstraint to the problem).

- very easy handling: the system ts ready as soon power is on. No need for any harivare
or softuarz support to provide or maintain a machire-realchle program. Tha input Gevice
18 a mark-gense card readcr and the owlput fs a printod Lisving.

The machine-<irdependent parts of the system are written in PASCAL and bootstrapped by

an existing PASCAL compiler.

'mi zroprograned”,

I'nivac 90/70

M. Sommer (see Siemens 4004 announcement, above) respondsd to Bill Hopkins' request
in Newsletter #7 for an implesentation for the HCA/Univac Speotra 70: ®Stemming from the
former cooperation between NCA and SIKMENS there is a close correspondsnce between SPECTRA
70 and SIEMENS 4004 ocomputers. Our operating system is derived from VMOS - now called
BS2000. OQur PASCAL implementation is running on a 4004/151 (compatible with SPECTHA 70/61)
under BS2000 (compatible with VMOS).* (Letter to B, Hopkins, dated Feb. 2, 1977.)

(* Thanks, Manfred! %)

Univac 1100 series

Bill Barabash of SUNY Stony Brook reports that they are in possession of all three
Pasocal oompilers for the U1110, They wuse the DIKU compiler by Steenagaard-Madsen for
beginning students because it only requires 42K. They use the HMike Ball San Diego compiler
(60K) in advanced oourses because it allows the oreation of modules with lndependent
global areas. They also run a preliminary version of the Fischer-LeBlanc Wisconsin
compiler which requires BOK and must itaself be compiled vy Mike Ball's compller, It's
extensive checking appears to be quite sound according to Bill.

VARIAN V-70 SERIES

In a note dated reb. 1, 1977, Gregory L.
2722 Wlohelson Drive, Irvine, California 92664,
interested In
line of minis."

Hopwood, Varian Data Machines,
(714/433-2400) states "Yea - we are
Pascal. Varian has a Pascal compiler (Brinch Hansen) which runs on our V70

In a letter dated Feo, 4, 1977, Michael Teener, Uata Sciences Division,
Service Corporation, 2811 wilshire Boulevard, Santa Monica,

Technology
California 90403,

i

\’J

(213/829~7411) reports:
“ Technology Service Corporation
1 y T Data Sciences Division

. 2811 Wilshire Boulevard, Santa Monica, California 90401 Phone- (213) 829-7411

4 February 1977

Mr. Andy Mickel

University Computer Center

227 Experimental Engineering Building
University of Minnesota
Minneapolis, Minnesota 55455
Dear Andy:

For the past year or so I have been looking for a Pascal compiler for
our Varian V-76 minicomputer. 1 looked into using a Pascal-P imple-
mentation, but that turned out to be too much work to do singlehanded.
I mentioned this 1ittle project to our local Varian rep, who then
shocked me by saying, "But we already have Pascal.”

Simply put, anyone can get Pascal from the Varian Users Group (VOICE).
The required equipment is a Varian V-70 with 32K+ memory, memory map,
Vortex II 0.S5., extended instruction set and 512 words of writable
control store (WCS). This last requirement is of considerable interest

8# 4ILL1ITISHIN TVISV

AYNW

LL6T

29 39vd

since Varfsn uses the WCS to set up the V-70 as a Pascal machine...its
machine language looks suspiciously 1ike P-code. The compiler {tself is
quite fast. According to my friends at Varian, it compiles over 1000
'statements a minute. S?me other characteristics are:

1/0 1s not standard, instead it is oriented around Vortex II

1/0 macros. All files must be opened before using, with
reference to files via logical unit numbers. ‘'GET' and 'PUT’

do buffered I/0 and 'READ' and 'WRITE' do character by character
1/0.

Programs can be overlaid.
. The range on integers 1s -32768,.32767.
. Integer case labels must be in the range 0...127.

The range of reals is about -1038..\038.

The relative precision of a real is about 1078,

A string must have an even number of characters. (A1l arrays
of type 'CHAR' are packed).

Enumeration types ('X=(A,B,...)') cannot be defined within
record types.

. An enumeration type used as a tag field tybe can have at most
16 constant identifiers.

Integer variant labels must be in the range 0..15.

A set of integers can only include members in the range 0..127
(strangely enough, this is room for all ASCII characters).

There is no 'text' type.
Comments are enclosed in double quotes (").
Brackets '[* and ']’ are represented by ‘(.' and '.)'.

. The horizontal arrow character (underline on newer printers) can
be used in {dentifiers.

. The first ten characters of an identifier are significant.

1 haven't had a chance to play with it much, but the programmers at Varian
claim it 1s extremely bug-free for a brand-new compiler. Anyway, anyone
can get it from Varian as VOICE #183C8.

As for Pascal ftself, I would 1ike to add my voice to the growing crowd of
real-world (i.e., non-academic) programmers who would 1ike, or rather,
demand formatted and structured [/0. Michael Hagerty's comments in #6

on this subject are excellent, :

Aside from uo“ g _dymmic array parameters {sbout which enough has been said),
1 really don't:}{ka the 'begin-end' blocking of Pascal, ‘It jJust doesn't
read very well ‘adds neadlass confusfon to the source cods. I would far

prefer to use-af jmplicit structure more 1ike Algo] 68 of IFTRAN. As 2

matter of fact, Nancy Brooks of General Research Corporation is implementing

a Pascal pre-processor much 1ike IFTRAN (which fs a joint GRC-TSC Fortran
Pre—Processorg which has the following syntax:

WHILE EXPRESSTON o) W ENDWHILE
®

§F)—={ExPRESSION] TATEMENT

EXPRESSION

~(enp1p)—

STATELIENT

Similarly for ‘FOR', 'CASE', and 'WITH'. (The 'REPEAT' form
is already consistent with this.)

The idea 1s to get rid of all those 'END's. Our experience with IFTRAN
leads us to believe that providing unique ending delimiters for compound
statements within each type of control structure catches many of the
common structural errors in complex programs. The 'IF' - 'ORIF' -

'ELSE' - 'ENDIF' structure is particularly good for this purpose. Besfdes
all that, the resulting pretty-printed 1istings are a delight to read.

Anyway, Pascal is the best overall language yet, and 1f the I/0 problems
are fixed, 1t could be near perfect for our use.

Keep up the good work.

Michael Teener
Manager
Computing Center

MT:cs

P.S. Oh yes, Varian Pascal does not have label types or 'GO TO's. How's
that for a restriction?

(* Editor's note: we made a mistake! We mistook the commentary on Pascal
in this letter to be sn explanation of extensions to the Varian
implementation, Half of this letter, therefore should have appeared in
the Open Forum section. ")

Z1Lo6 Z-80

Ken Bowles has announced an implementation for the Z-80 to be distributed sometime
this sunmer. Por more details see the Digital Equipment PDP-11 section of this Newsletter.

According to Jim C. Warren, editor of Dr. Dobbs Journmal of Computer Calisthenics &
Orthodontia {Oct., 1976 issue, p 6), Nlel Colvin of Technical Design Laba, Treaton, New
Jersey, has adapted a P~code compiler for the 2-80. The P-code interpreter reportedly
occuples about 1K bytes. Another Zilog rumor is that Dean Brown is the person at Zilog to
see about Pascal, .

8# Y3ILLITSMIN TVISVd

‘AVH

LL6T

£9 39vd

INDEX TO IMPLEMENTATION NoTices (1ssues #5 - #8)

Portable Implementations.

Pamocal P.
#5: 44-50,
#6: 65-67.
#7: 27.
#8: U0-41,
Pasocal Trunk.
#5: 51,
#9: 42,

#5: 51,
#7: 27-28,
18 42,
#5: 51,
Pascal Varlants.
Concurrent Pascal,
#5: 53-54,
#0: 67-69.

#3: 42,

Software Writing Tools.

#6: 70,
#7: 29.
#8: 40,

Machine Dependent Implementations.

Note: (*) indicates that one
or more implementations exist,
are underway, or are being
considered.

Amdahl 470,

see 18M 360, 370.
Bur-roughs B1700.

#6: 71,
Burroughs B3700,BU4700.

#8: 4u-4s5,
Burroughs 85700.

(*)

Burroughs B6700.
#5: 51,
#6: 72-74.
#7: 29.
#8: UBeNT,

CII 10070,
see also Xerox Sigma 7.
#6: T4,
#7: 29-30.
CII Iris 50.
#6: T4,
CII Iris 80.
#6: T4,
#7: 29-31,
Computer Automation LSI-2.
#3: 48,
Control Data Cyber 18, 2550.
#5: 51,
#8: 48,
Control Data 3300.
(%)
Control Data 3600.
()

Control Data 6000,7000;Cyber70,170.

#5: 5153,
#6: TH-T5.
#3: 43,
Cray Research CRAY-1.
#6: 75-T6.
Data General Nova series.
#d: 49,
pigital Equipment PDP-8.
#7: 32,
Digital Equipment PLP-10,
#5: 5455,
#6: 76-78,
#3: 49,
pDigital Equipment PDP-11.
#5: 53-54.
#6: 78-79.
#7: 32-37.
#8: 49-52,
Foxboro FOX1.
#7: 37-38.
Fujitsu FACOM 230-38.
(*)
Fujitsu FACOM 230-55,
(*)
Hewlett Packard HP-2100.
#6: 80.
#3: 52.
Hewlett Packard HP-3000,
#6: 30.
Hitachi HITAC 8700, 8800.
see 1BM 360, 370.
Honeywell series 6.
(®)
Honeywell H316.
#5: 55.
#6: 80.

Honeywell 6000, Level 65 series.

#5: 55.

#6: 80,

#8: 52.
IBM 360, 370,

#5: 55-63.

#6: 81-86,

#7: 38-39.

#3: 52-53.
I8M 1130.

#6: 86.

#7: 39,

#8: 54,
ICL 1900,

#8: 54,
ICL 2970,

#8: 54,
Intel 8080.

#8: S4-56.
Interdata 4.

#8: 56.
Interdata 7/16.

#6: 87.
Interdata 8/32.

#7: 40.
Mitsubishi MELCOM 7700.

*)

Motorola 6800.
#6: 87-88,
#8: 56,
Nanodata QM-1.
#8: 56.
Norsk Data NORD-10.
#8: 57-58.
Philips P-1400.
(*)
Prime P~U400.
#6: 88.
RCA Spectra 70.
see Siemens 4004, 7000.
see Univac 90/70.
SEL 8600,
*)

SEMS T1600, Solar.
#8: 59,
Siemens 150,
.

Siemens HOOW/15T.
#6: 88,
#8: 60-61,
Siemens 7000.
#8: 60-61.
Telefunken TR-U440,

Texas Instruments TI-ASC.
#8: 61,

Texas Instruments TI-980A,
*)

Texas Instruments TI-990, 9910.
#8: 61-62.
Univac 90/70.
see Siemens 4004, 7000,
#8: 62,
Univao 1100 series.
#5: 64,
#6: 8990,
#7: 40-42,
#8: 62.
Varian V70 series.
#6: 90,
#8: 62-63.
Xerox Sigma 6, 9.
#6: 90.
#7: H2-44,
Xerox Sigma 7.
see also CII 10070,
#6: 90.
#7: 31, 44,
Zilog Z-80.
#3: 63.

8# YIL13ITSHIN TVISVd

LLBT AVNW

h9 39V¥d

PASCAL USER'S GROUP ALL PURPOSE COUPON

USER'S HHFEFRRFFEFRSRRERN

GROUP

Clip, photocopy, or reproduce, etc. and mail to: Pascal User's Group
c/o Andy Mickel
University Computer Center
227 Exp Engr
University of Minnesota
Minneapolis, MN 55455

(phone: (612) 376-7290)

renew my membership in ' next -
/ / Please enter me as a member of.the PASCAL USER'S GROUP for the current Academic

Year ending June 30. I shall receive all 4 issues of Pascal Newstetter for
the year. Enclosed please find $4.00. (*When joining from overseas, check
the Newsfetten POLICY section for a PUG "regional representative".*)

/ / Please send a copy of Pascal Newsletifer Number . Enclosed please find
$1.00 for each. (*See the Newsfetten POLICY section for issues out of print.*)

/ / My new address is printed below. Please use it from now on. I'l11 enclose an
old mailing label if I can find one.

/ / You messed up my address. See below.
/ / Enclosed are some bugs I would like to report to the maintainer of the

version of Pascal. Please forward it to the
appropriate person so that something can be done about it.

/ / Enclosed please find a contribution (such as what we are doing with Pascal
at our computer installation), idea, article, or opinion which I wish to
submit for publication in the next issue of Pascal Newsfetten.

/ / None of the above.

Other comments: From: name

address

phorie

date

(*Your phone number helps facilitate communication with other PUG members.*)

