‘

X4

July 1976 PASCAL NEWSLETTER Number 4

FROM THE EDITOR

The fourth newsletter is long overdue, the third being published in
February 1975. There have been many significant events that need
announcing. The highlights are:

- Release 2 of PASCAL 6006-3.4 has been made available by
Dr. Urs Ammann at Eidgenossische Technische Hochschule in
Zurich, Switzerland. It is also available from Mr. George
Richmond at the University of Colorado Computing Center in
Boulder, Colorado and Mr. Carroll Morgan at the Basser
Department of Computer Science, University of Sydney,
Australia. Many improvements have been made over Release 1
and future developments are promised. See page 73.

- Mr. Carroll Morgan of the Basser Department of Computer
Science at the University of Sydney, Australia has kindly
agreed to distribute ETH Pascal and portable Pascal for
Australia and neighboring regions. 1Interested parties should
contact Mr. Morgan for more information.

- Mr. Andy Mickel of the University of Minnesota kindly agreed
to take over editorial control and publication of the Pascal
Newsletter commencing with issue Number 5 in September 1976.
He is also organizing a User s Group. See pages 88 and 89.

- An improved portable Pascal has been released from ETH,
. Zurich. See page B8l.

- News of Pascal compilers for numerous machines has been
received. See pages 96 and following.

- An expanded bibliography of Pascal 1literature has been
compiled. See pages 100 and following.

I have enjoyed producing the first four newsletters but I have found
it to be very time consuming. I am grateful to Andy for taking over
these duties with enthusiasm. I will continue to distribute Pascal in
North America thru the University of Colorado.

. = George Richmond

Ens (3 LocAe ’

y

Tee\nm‘_gc‘ne Ho .;r_\noo(—ru¢n+'¢
h?gAe(‘ow\A
dbus 217 .

Comment vn an extension uvf PASCAL

In 8 recent PASCAL-newsletter (##3) ve find a propusal by N. wirth
regarding "A genurlliiation of the READ and WRITE provedures”.’
The proposal, which has been implemented in the PASCAL 6000-3.4

co-pilcr)conniders the procedure

rvead(f,x) to be synonymous to the sequence!?
x 1= ft 3 get(ff) s and
write (£,x) to be synonymous to the sequence

£t 1= x } put(f)

It is n; opinion that standard procedures should ouly be introduced

vhen

a) their body cannot be described in the langusge PASCAL, or vhen

b) there exists an essentially faster mapping of the body directly
onto the wachine-code (e.g. one instruction that does the job)f
than the compiled code of the PASCAL-body admits.

Standaxd procedures of type a) should be a standard for the languages

as such. . .

Standard procedures of type b) should be standard for a particular
configuration only, in order to give the programmer a convenient form

of access to particular aspects of the machine at hand.

When transferring a program based on type b) standard procedures to
another machine, the portability is ensured by supplying the appropriate

procedure-deelarations.
Procedures that do not satisfy any of the above criteria may nevertheless

be placed for convenience in a library of (basically) source-code
procedures.

In line with the above philosophy we have decided not to implement the
srithmetic functions like sin, atan, 1n etc., in our PASCAL-version for
the PDP/11 series. Apart from the relief for the builder of the system
who has to implesunt these routines in machine code, one may well suppose
that an abundance of standard procedures can be disadvantageous to the

compactness of both compiler and runtime system.

Now lat us take a look at the file-proposal with the above in wind. Then
the proposal only satisfies criterion (s). This criterion is satisfied

1

since iLf the procedures were to be described in PASCAL the type of the
paraseters £ and x had to be tixed.

1t would, however, be & very minor job to declare the procedures “"read”
and "write®” to be specitic fur a perticular type of paramster. The
bodies would all be equal, only the parameter specification having to
be adapted. This seems hardly a problem since the number of ditfferent
file types that are dealt with in one program will be quite llntiod.

My suggestion is that -~ Lif the proposed standard procedures are not
avallable - one simply declares:

readplop (f 1 file of plop ; x 3 plop)hs
begin x 3= £+ ; get(f) and

and
writeplop (f : file of plop 7 x & plop)s
begin ft 1= x ; put(f) end

There is, however, a much more important aspect of the current procedures
"read” and "write” that asks for a generalization.

Whereas the files they implicitly operate on (input and output) are

‘5113 of char” , the actual parameters, may be of arithmetical type and

a conversion from or to character sequence is specified by the somewhat
extraordinary remaining parameters (in the case of write).

It seems to me that thers is a greater need to generalize the procedures
"read® and "write” in this respect, viz. making the conversion available
for all files of char. One may now visualise how a PABCAL program may
build two output streams in parallel, a feature even the coapiler could
us_e .

Alternatively, the conversion routines themselves. could be made available,
but because of rigid data-sizes in PASCAL there is no way of properly
dealing with the format specifications. This appears one of the major

arguments for considering “"read"” and "write” as standard procedures.

One might counter my arguments by stating that it is possible to describe
“arithmetic quantity ++ character sequence” conversion wholly in PASCAL
but apart from the above arguments concerning the need for flexible
data-formats, it is impossible to describe the conversion frowm a real

2

¥

quantity to & character sequence ia terms of real ovperations because
ot the implicit inexactness of real arithmetic. In that case at least
4 standaxd procedure has to be supplied for the conversion of & reul

if one

quantity to (# aumber of) imteger quantities. In other words:

has 8 real quantity x, for which . | S x <1 , it is not
guaranteed that | < x * 10 < 10 , and therefore trunc (10 « x) may not
deliver the correct digit! This example shows, by the way, that

£s a very illdefined function, which should be abolished from

prograsming languages!

"trunc”

C. Brom.
Enschede 25.5.1975.

c.c. Wiregh,
Richaond.

~#h) DATA ARE SPLIT INTC &

Luc ' FEIEREISEN

"INSYITUT F. BIOKYBERNETIK U, BIOMED, TECHNIK

UNIVERSITAET KARLSRUNHE
D=TSPBKARLSRUNE 1
KAISERSTR.12

(;cmvaugy

KARLSRUKE, 30eJUN?S

¥A, GECRSE ., RICFIMCNE

LANIVERSITY CF CCLCRACC

CCMFLYING CENTER

FSRE a3

BCLLCER, CCLCRACC 8¢302

DEAR MR, RICHMOND,

I THANK FOR YCUR LETTER FROM THE Jé6-MAY=T7S, THE PASCAL
CONP!LER BASED ON JANUS HAS BEEN IMPLEMENTED ON THE FDF=11/4S
RUNNING UNDER THE CCS/@ATCH CFERATING SYGTEM AND A FRELIFIMARY
VERSIO™ WeS #fes RELEA4Scy 1C A LIPITEC NLFBER CF SITES,

THE AVAILAHLE PASCAL-CCPFILER (P5ST74) 1S WRITTEM IN TPE
LANGUAGE 1T TRANSLATES, ITS JGB 1S TC ANALYSE A PASCAL PRCGRAY
FCR SYNTACTIC ERRCKS aNC TC GEMERATE CCLE FCR A .STANCARE ABSTRACY
PACKINE CALLET JANUS (CCL73),

THE MACRCGENERATCR STACEZ (WAI?3, MEIT74) PAFS THIS
SYMEOLIC JANLS CCLE IATC THE PLP=11 ASSEMELER CCCE, VMACRCe1i, THE
JANUS/FACKO=11 TRANILATCh IS NEFINEC BY SET CF STAGE2-MACRCS, A&
ThE PROLIICED CCCOE IS CRGANIZEDC ARCLAL AN ITDEALYIZEC ABSTRACY
VACHINE THLRE 1S LEFT CCMSICEWNABLE RCCM FCR CPTINMIZATICM, CCCE
SEFERATE FILES,

THE FIMBL TRANSLOTICAN TC ABSCLLTE CCCE 1S FRCVICEC BY TFE
NCRIAL PUP=1]1 ASSEVFELER anD LINKNER, THE FASCAL LCACER LCALS TPE
CATAFTLE INTC TeZ LSCHeLATa=SFANE (32 K waXIMLNM) MNC THE OCCEFILE
INTC THE USER=INSTRUCTICA-SFACE (32 K VAXINLKN),

fHE FASCaL~COMPILER REGUIRES TC CCMPILE ITSELF (FASCAL/
J&NUS) of K WCRUS CF VEVMChY ANL 6Q4 SEC, TFRE TRANSLATIOMN ANC
EXCECUTION TIMF CF PASCAL ANC FCRIRAM WERE CCPPARECS THE WPCLE
TidA\GLAVION FRECESS IS ABCLTY THE FACTCH {,29 TraY CP ECUIVALEMNY
PCRIRAN #RQYGRAFS (h THE FUPel), WFEREAS TFE EXECLTICMN SPEEL I8
$BCUT THE FACTOR 2,65,

AlLL FFAaTUKES CF THE USFC PASCAL LANGLAGE (CLASS ANC ALF)
VARTARILES, VBLILF AND FILE CECLARATICNS, GLCBAL EXITS, o...) ARE
IFPLEPENTLD EXCEFT FCH PARMMETRIC PRCCEDLRES, TrRE FLCATING FCINY
FRECEISSIR [S LSEL FCR REAL ARITHFMETIC ANC FCR TEXT=kANDLING
(ALFA 1YIPE), TRE 170 CCNCEPT INCLLCES CONCURRENCY AND EXFLIZIY
CUTPUT CiINTRCL (GRAPHIC CUTFLT PCSSIBLE 1CC),

YTHE PASCAL=11 LSEW®S GLINF PRCVIZES INFCRPATICN INECESSARY
TO INSTALL TFE FASCAL=1Y SYSTEF #AL TC TAANSLATE AND EXECLYE
PASCAL PRNGRAYS Ch THE PrPelisas,

4

M€ FASLL=CCMFILER CAN PE MCVEC TC ANCYFER COMPLIER

LT & 8 [MTTTR ARCURT CF KEFCRTS THE JANLE TRANSLATCR, WHICH
THAMSLATFES THE PACHNE IACFPEMCANT JOMLS CCCE INTC THE ASSENELY
(CLt FCn TRE TAKGET FACFINE, KBS TC BE REWRITTEN, I1,E, ANCTFEF

SET 0OF 1ACHCS FCR THE NEW MALMINE K4S TC EE CEFIMEC, Tﬁ! NECESSIRY

CCCUMEN) ATION IS sYAILAYLE FRCK (REET3),

THE FASCEL=-CCMFILER (WRITTEM IN FASCAL ANC JANLS), TFHE

STAGES MCROCENERATOR (CCS AAL REYeyl VERSICN) (HEI74) ANC THE
Pailale) t USLN®S GLIUE (FEI?S) (2Q FAGES) »8 WELL 48 THE WhCLE
BPASCal.=44 3YSTEV AlE AVAILAHLE,

WEFLRENLESS

coenoasemoan

ceLry

FETTS

rfl74

PASYS

“ALT3

WERT3

FLTLKL o

CLLLE AN, 8,5, PCCLE,FL.Cy o WAITE, R ¥,
Tl MOAILYE PiHCLRAMIPING SYSTENT JANLS
LIIVERSTIY CF CCLURMGC, ¢CLLCER, 1971
SCFYWAPE FRLCTICE AnC EXPERJENCE

VETFRCIGEN L,
Ma5CAl =1l USER’S GUICE
NIVERSITAET KAWLSRLFE PAT«7S

PETL IOk F b,

STAGEZ FCK TRE PCPe3t CECLS 1974
PASCAL CCMPILER
AMMAN,U, , SCHILL,R, CATES23/41/72

FACHGRUPFE CCMPUTERWISSENSCHIFTEMN
EING, TECHFATSCHE HCCHSCHLLE
CHeBLR¢& ZLERICH. T

REVISICA T PRCOLCE JAMUS
LARKY B, WERER

URIVEASITY CF CCLORAEC SFRING 1872
HEVISEH EY LLCIEM FEIEREISEN

I'NIVERSITY CF RARLSFULME FAOLL 1974
LAITYE ;v ¥,

IMPLEIENTIRG SCFTWAKE FOR NCAeAUFERIC APPLICATIONS
PENTICE=FALL IMN,, ENGLEWCCD CLIFFS, N, J, (1973)

LERER LGP,

A PASCPINE INCEPENCANT PASCAL CCMPILER
MSeTHESEE, UNIVERSITY CF CCLCRADC, BCULSER, 1873

1 an FLEASED TC BE CF ASSISTANCE, BCTH NCh AND TA YHE

YCURS STIMCERELY
L

UNIVERSITAT HAMBURG

INSTITUT PUR
INFORMATIK
Prof. Dr. H.~H. Nagel

. Snecitwt fur lnformatik
3 Hambury 13, Schitltarstrae 66-72

July 1st, 1975
Dear Mr. Richmond,

The enclosed summary informs you about our PASCAL-compilers avail-~
able for the DECSystem-10. In case you enquired recently about our
compiler and did not yet receive an answer, please excuse me. I
have been busy (amongst other tasks) to prepare this version for
distribution.

1 You are on a distribution chain for three DECtapes and schedul-
ed to receive them from : . .

(J Please check here if you are interested to obtain our PASCAL
compiler,

- Shipment requires (please check)

[1 Dectape for the PASCAL~compiler generating directly executable,
sharable object code . .

7] 2 Dectapes for the PASREL-compiler generating LINK-10 compatible
relocatable object code, the PASCAL source level de-
bugging system (PASDDT), the crossreferencing program
CROSS and the PASCAL-Help file (the latter one in
German since I did not want to delay shipment any
further by the time required to translate this file
into English).

211 small MAGtape if you don't have Dectape drives at your instal-
lation. Since MAGtapes require more trouble at our site, DEC-
tapes are preferred. '
Please do not send tapes if you are located in continental US,
or Canada since® I intend to reier your name to someone in your
vicinity who has received these versions.

I Would you see a possibility to provide a copy of these files to

someone else if asked to do so?

I{ you are interested, please return thisAqueséionaire to
o H.-H. Nagel, Institut fir Informatik
"“Schlilterstrafe 70, D-2000 Hamburg 13

Yours sincerely

« rf. lLogee

The PASCAL iuplerentation for thc DECSystem-10 has been considerably
inproved and enlarped. It now supports all phases in the generation,
debucging and maintenance of PASCAL programs.

3. The editinr phase by the formatting features of CROSS.
2. The corpilation phase by offering: .
&.1 2 conpiler nared PASREL generating relocatable object code
compatible with LIIIK-10. Output from this compiler will
. autoratically direct the loader to search the FORTRAN-library
® . fcr standard functions SIN, COS etc. if necessary. External
procecures (e.g. written in MACRO-10 or separately compiled
PASCAL procedures) can be linked on. A source level debug
option is avajiladble (mee p. IV).
2.2 8 xore conpact, faster conpiler named PASCAL generating
directly executable, sharable object code. Use of this com-
piler is recomnmended, if .

no external procedures
no dedug option
no standard functions from the FORTRAN library

are required.
3. The deburrins phese: breakpoints can be set at runtime based on
aource prosran line numoers. After a program stop3d at such a break-
point, variable locations can be inspected and modified using the
source progran fdeantifiers (sce p. 1IV).
d. The raintenarnce phase: the program CROSS generates
= an incentaied source program listing with extension .CRL
- parkers in the left margin for each start and termination of
nested statements

« a crossrcference 1list of all source program identifiers

- 8 survey of the static procodure nesting .

- for each procedure a list of which procedures it activates and
by which procedures it is activated

~ an indentated source program file with extension .NEW

The followiny section surrcarizes new features available in both
compilers (see the PASCAL.MLP file distributed with PASREL for
further inforration):

5.1 READLY {(<file identlricr))] skips over the rest of the current

- line until the next end-of-line is detected. It accepts further
argurents. . :

8.2 PAGE {((filo identlrier>)} appends a ccarriagpe return><form feed>»
to the FILE O7 CiAR denoted by <file identifier>. If none is :
given OUTPLT is assured. <formfeed> advances to the beginning
of the next page.

$.3 The procedures PACK and UNPACK have been implemented with an
opticnal fourth argurent, These procedures are much
rore effective in packing or unpacking larger arrays than a FOR~ -
loop using indexed access to components of such an array.

5.8 The seqguences (v and %) are recognized as opening and closing
corment bracxets in addition to £ and \. :

$.5 CROSS and both compilers accept the general file specificatio

° _ allowed by the TOPS-10 monitor. g

5.6 A constant sudbrange may be given in sets, te.g.
Oar .. *c'] instead of [*A, 'B', 'c'].
5.7 An QTHERS bdranch may be specified in CASE~-statements. -

5.8 Compiler options (see also 5.18):
5.8.3 $3CA\ generates instructions for runtime checks
at array indices and asaignment to scalar
and subdbrange varisvles. . .
£3C-\ suppresass code generation for runtime checks
Defaults C»

11

5.8.2 3S3$L+\ appends the symbolic version of the odbject
code generated to the source program listing
for each procedure and adds the starting ad~
dress of the object code for each source pro-
gram line
23L-\ no symbolic object code listing
Default: L~
. Sinco runtime errors still give only the object code address be~
sides the message identifying the error, compile the program
with the compiler option L+ in addition to C+ in order to learn
from this listing, to which source program line the error ad-
dress belongs.,

5.9 The following standard functions are available to both compilers

function of result type yieldin
TITE * TNTEGER tine {Ezmillisecondl
RUNTIME INTEGER CPU-time in milli-
soconds
5.10 For initialisation of global variables at compile time use
INITPROCEDURE.

5.11 The LOOP statement is available.

5.12 The standard procedures RESET /REWRITE can be used with up to

four optional arguments allowing full file specifications at

. runtime

$.13 Pascal programs to be compiled by PASREL may use the follow-
ing additional standard functions (all functions and arguments
are of type REAL) from the FORLIB on the logical device SYS:

SIN cos ARCTAN EXP SQRT RANDOH
SIND cosD TANH LN

ARCSIN ARCCOS LOG

SIKH COSH

function of result type ¥ieldin5
DATE PACKED ARRET]i..9j OF CHAR TLD-Iui-YY?!
with D=day,
Mzmonth, Yzyear
5.18 Following the head of a procedure/function declaration by
- EXTERN <¢language symboly;
will direct the compiler to provide for linkage to an external
procedure/function.
<language symbols::=empty) FORTRAN|ALGOL)COBOL.

The }anguage symbol determines the conventions for parameter
passing to an external procedure/function, If none is provided,
PASCAL is assumcd. If any of the three nonempty language Sym-
bols is indicated, the loader is directed to search the core
responding library ©on logical device SYS,

f a group of PASCAL procedures without a main program has to bde
compiled separately, use 35i-\ at the beginning of the correspond-
ing PASCAL source file. In this case the outermost procedure/func~
tion names will automatically be declared as EKTRY by the com-~

-piler. Include their .REL files when loading!

5.15 BREAX {(crile 1dontirior>)} forces the current buffer contents
to be output to the file specified by <file identifiers>. If none

is specified, TTY is assumed. This feature is useful, too, for
intercomputer-coamunication at the PASCAL level. :

4

11

To use the crossreference listing program

.RUN CAROSS
FILE: {filenaxe)>

To use PASCAL:

. +RUS PASCAL
s<filename>
{0} ERROR DETECTED

BXIT
«RUN CLlenane> b

“?o use PASREL:
.RUN PASRZL

o] 'ERROR DETECTED
!
HIGHSEG : U X

IOWSEG t N K

RUNTIME, : T
EXI?

LOAD Tilenane»
LIlIX: LOADIMNO
BEXIT

+SAVE Cilenamer ¥

JOB SAVED
+RUN filenane>

after FILE: : is typed by CROSS give

source filename in the format

DEVICE: FILNAK.EXT [project# , progr.#)
cvirythins except FILNAM may be ogitted

source filename specification (see tross)

I an error has been detected, objoct
code is not available for execution!

The core requirement indicated by ¢# -
must be esstimated from the length of
LOW and SHR file plus space for stack .
and heap. Since érror messages will
appear if core space is insufficienty
trial is often the quickest approach.

source file specification (see CROSS)
(see PASCAL)
M indicates size of high segment (code)

- in Kwords

N indicates sise of low segment (data)
in Kwords

T indicates CPU-time used for coipilltioa"
.louding the program

The total core requirement W must be .
givon. WEMN + N + 4 Kwords ’

£ no debug option has been specified in ’

the source program, the save~file can de -
made sharable by using the monitor come~
pand SSAVE «filenamer W. :

execute the program

Instructions to generate § new compiler version can be foynd
at the beginning of each PASCAL-compiler source version.

Note:
Not yet implemented:

« formal proceduréd/function arguments B . A
. = braneh out of & procedure/function (ladel declaration ie¢”not

yot roqutrpa)

9

1v

6. DEDUG option
. . pdicate debug option in (part of the) cource pronrasm toxt?
23D+\. If no debugging is required in later parts, fol=

lcw the section to be debupged by S8D-\ aince this will

save core and runtime in those scctions not to be debugped.
6.2 Use PASREL etc. (sse above) to generste an gxecutabdble Sav

rile, giving WXK + N + 8 to allow working space for the

debug code.

' 6.3 Get the listing of the eompfﬁcd program in order to know

exactly where to set

breakpoints by

PRINT <«filenamenlST

6.4 JRUN <filenane>
.3
:mrnmumz_u

6.5 § STOP <LINE>

6.6 i STOP NOT <LINES
- 847 B STOP LIST

6.8 § <VARIABLE> =

- '6.9 § <VARIABLE>:= CVARTABLE

6.10 $ TRACE

6.11 § END

2

§.42 § STOP AT QALINZ>
6.13 asynchronous stop

. %1
JDDT -

begin execution of this progcram
answer with <carriage returnd

enter dreakpoints using the follow-
ing commands .
sot a stop at the begin of the source
‘1ine indicated by line nusber <LINE>
<LIKE> 11s SLINENUHBER> |
< LINELUIIBER> /& PAGEIUHBER>
<CLINENU%BER>: := <UNSIGLED INTEGERY -
¢ PAGELUNBER» s 25 ¢UNSIGIED INTZGER
If no pagenumber is given, 1 is as-
sumed.,
deloto breakooint at line ¢LINE>
1{st all current breakpoints on the
terminal
give the current contents of the lo~ .
cation indicated by the source iden~
tifier (possibly expanded by quali-
fiers); the scope rules applying to
the rourco statersnt corresponiing
to the current breakpoint uniguely
determine the variable location from
the identifier given. All qualifiers
legal in Pascal may be used (i.e.
pointers, record fiélds, array com~
pononts)
OR CONSTANT> .
The variable or constant value on
- "the right hand is assigned as current
* value to the varisble indicated in
the left side
Backtrace of procedure nesting froa
Breakpoint to rain; exposes activat-
ing procedures with linenuzbder/
pagenurber of activation points i
leave debug node and continue execu=.
tion. If any breakpoint is reached,
the message’
" appears on the terminal .
If the program has been compiled
with the debug option, it's execution
can be interrupted by two successive
control C: .
. 'typing DOT will then transfer con-
trol to the debugcing node

4 STOP BETWEEK <LINE1> AND <LINE2> will appear on the

terninal to indicate where the pro-
. .gram has been interrupted. Use of
commands described in 6.5 through
. 6.13 is now possidble.

io

INSTITUT NATIONAL POLYTECHNIQUE

oE Lomamaine

DEPARTEMENT INFORMATIQUE

Nancy, le 4 Juillet 1975

Monsieur Alain TISSERANT

Ecole des Mines
Département Informatique
Parc de Saurupt

54042 KANCY CEDEX
Yrance

Mr George H. RICHMOND
Pascal Newsletter Editor
University of Colorado
Computing Center

3645 Marine Street
BOULDER, Colorado 80302
U.S.A.

Pear Sir,

. A Pascal compiler for Télé&mécanique T1600 and Solar
minicomputers is under development; a first version will be
available in September 1976. These computers have a 16 bits
vords size, and no virtual memory facility. Our compiler will
run with 24K words. '

~We are implementing a segmentation wechanism, reflec-
ting both Pascal programs structure and the Solar computer archi-
tecture. At each procedure call, a nev "segment" will be created
for code and local data. A specislised monitor manages core memo-
¥y, and svap operations.

The Pascal-P compiler is being modified (without change
in the language accepted), in order to get code adapted to our
data structures representation and our particular procedure lin-
kage method, '

We are using an existing Pascal compiler (on the CII
Iris 80) for first binary code generation of the Solar compiler.

All these mechanisas are fully transparent to the user.
By careful use of the particularities of special imstructions and
the architecture of the computer, we hope to get a high speed, easy
to use Pascal system.

Sincerely,

A. TISSERANT

N mee 4 s e e mie ey

(—-Fi;””—'- . -;\
i U (4:/’>

-

DEPARTMENT OF COMPUTER SCIENCE

WBF/CHcL

THE UNIVERSITY OF MANITOBA

WINNIPEG, CANADA AJIT 2N2

15¢h July, 1975.

George H. Richmond,
Computing Canter,
University of Colorado,
3645 Marine Street,

BOULDER,

Colorado 80302,

u.s'A.

Dear Mr. Richmond,

The enclosed is being seut to all the people who have written to
us requesting informatiom about our PASCAL‘implenentltion.

I realize that up until now, very little information about the
project has been released. 1 think that this description gives a fair
representation of our compiler as it curreatly exists.

The compiler was written as my Ph.D. project under the supervision
of Professor James M. Wells. Professor Wells 1is currently on sabbatical
leave in Ottawa. For this reason, I would appreciate it 4{f you would
include my name on your PASCAL Newsletter distribution list.

I am very interested in descriptions of other PASCAL Compilers and
iaterpreters for IER! machines. 1f you have any information on core requirements,
coxpile speeds, and whether or not the full language is supported, for the
Crenoble, Stanford or Cambridge projects, I would appreciate hearing from

you.

Yours sincerely,

W. Bruce Foulkes

(Eac.)

THE UNIVERSITY OF MANITOBA

OEPARTMENT OF COMPUTER SCIENCE WINNIPEG, CANADA A3T N2

WBF/CHcL July, 1975.

Dear Sir or Madan,

We are announcing the availability of a PASCAL compiler for IBM 360/370
computers, developed by the Departnent of Computer Science at the University
of Manitoba., The compiler was written by Mr. /. Bruce Foulkes under the
supervision of Professor James M, Wells.)

The compiler is one-pass and uses a top-down parsing strategy.
A generated assembler parser is produced by the translator writing system
SYNTICS. All semantic routines are written in PL360, while system interfaces
ave written in assembler.

The compiler is not & re-write, modification, or bootstrap of any
previous PASCAL compiler. The compiler uses some routines provided by the
SYNTICS systen and borrows some ideas and code from the ALGOLV compiler for
code generation, built-in functions, and 1/0.

This version of the compiler requires spproximately 170X bytes. This
size is variable, but the minimumn size for compiling a meaningful program
is approximately 150K.

Coupile speed for test prograns has been in the range 125-200 lines per
second on an IL{ 370/158. This excludes the set-up time of spproxinately
0.4 sec.

A great deal of compile-time checking is done and approximately 130
different error and warning messages are provided.

The production of run-time checking code for array subscripts, subrange
assignments, values returned by PRCD and SUCC, etc., can be turned on or off
at will, Run-time interrupts are trapped with a SPIE macro. There are about
40 run-tine error diagnostics in total, Each error diagnostic consists of
an error nessage, location in the current segment, the invalid value if

oo-,z

appropriate, and a traceback of all segments invoked.

Linkage, although not completely standard between PASCAL segments,
appears to be standard IR! to any external segaents, allowing 1inkage to
routines written in other languages. .

The corpiler supportn‘ a subset of the language described in the
Revised Report. The main omissions are the following: h]

= only the standard input and output files SYSIIN and SYSPRINT
are supported. All I/0 is done through the usa of READ,
READLN, VRITE, URITELN, EOLN, and EOF. The 1/0 is not
exactly standard; in particular, formatting is also allowed
on input.

= the program header is not used.

SYSIN and SYSPRINT must
alvays be provided. :
- packed arrays and records wre nct supported.

= only the simple forms of procedures I'EW and DISPOSE are
alloved. Tagfield valuss may not be specified. ilo garbage
collection 1is done.

=~ global labels are not ‘nplmcod.
= gubranges of characters are not allowed.

With the above exceptions, the language supported is very close to that -
described in the Revised Report.

Seven standard scalar types are provided: SHORT INTEGER, INTEGER,

REAL, LONG RLAL, BOOLEAN, CHAR and STRING.

Built-in functions include: ARS, SQRT, EXP, LN, LoG, SIN, cos,
ARCTAN, SQR, SUCC, PRED, ODD, ROUND, TRUIC, ORD, CHR, CARD and
CPUTIIE. . . .

The compiler checks for overflows on all tables and produces terninal
error messages. The main table sizes may be modified using paraneters
on the LXEC card. -The source for an initialization routine will be provided
which sets the size limits for all compile~time tables, and also sets defaults
for compiler flags (such as whather run-time checkirg code should be produced).
This should allow the compiler to be tailored to suit the needs of any
installation. The remainder of the source will not be released at this time.

. There are two main linitations inposed by the compiler. The maxirwm
nest allowed for procedure and function declarations is S, and all program
segments are restricted to 4K bytes of code.

The compiler has not undergone large-scale production testing; for
this reason, no guarantees are made as to its reliability. Considering the
interest which has Leen shown in the compiler, we feel that wa cannot Juscify
delaying its release any longer.

..'/3

P -———

The PASCAL compiler may be acquired by sending the PASCAL Order Form
snd the signed DISTRIBUTION AGRLEIEUT together with §50 (payable to the
Department of Computer Science, Lniversity of ilanitoba), to the PASCAL
Distribution Manager.

The tape will contain the object nodules necessary to generate the
coapiler along with anple JCL, test programs and a user's guide.

After a suitable test period an updated version of the compiler may
be offered, but no proaises to this effect are nade.

Us hope that few problems will be incountcrod.

Please see the cncloood material if you are interested in ordering the
compiler.

L. Biien :EEL,,-¢,¢<:EGE.;

PASCAL Distribution Manager

15

[T

; . 1 UNIVERSITY OF MINNESOTA Umvmuy Computer Center
o svu) ywin emies | 227 Experimental Engineering Building
Minneapolis, Minnesota 55455

July 16, 1975

.To the Editor, Pascal Newsletter:

We at the University of Minnesota would like to participate in a Pascal
User's Group for North America to help distribute and support PASCAL.
Io communications with various other sites: Alfred Towell at Indiana
University, Dave Tarabar at University of Massachusetts, and George
Richmond at Colorado University, there seems to be a desire to form
such an association. Perhaps a kind of conference would be appropriate
for getting started.

The usage of PASCAL at our site has been heavy lately. PASCAL is being
used in general applications on not only the MERITSS CDC6400 state-wide
timesharing network but also at the University of Minnesota's batch
computing facility, a CDC CYBER 74. We have locally wodified the PASCAL
system totally in a cosmetic way: fixing bugs, making interface changes
for the KRONOS 2.1 operating system and making PASCAL available under
the TELEX timesharing supervisor available with KRONOS. . A dozen or so
sites have our modifications for interactive usage, however we don't
know as yet how useful they are for INTERCOM under SCOPE 3.4, although
Urs Ammann of Zurich seema to think we went about our changes in a decent
way, which may make them a good model to follow,

We would like to caution others about what "improvements" they make to
their implementation of standard PASCAL* For one thing the old compile ~
to core PASCAL compiler for CDC machines was changed by many people in
ways that violated the underlying principles of the language. For
example: simplicity in design (which implies simplicity in description-
in other words, few exceptions to the rules); a specific infraction
being the addition of a step specification in for loops by one installa-
tion.

In reply to a letter to the editor of 6 August, 1974 by George Poonen

ia Pascal Newsletter No. 3, we would like to reply that we also deplore
"dialect_s" of PASCAL. Howcvcr. BLAISE and SUE are not dialects but

other PASCAL-like languages. Further, the Axiomatic Definition and

the Revised Report define the standard semantics and syntax of the language.

* See the very interesting article: "An Assessment of the
Prograzming Language PASCAL" by Niklaus Wirth in the
June, 1975 1ssue of SIGPLAN Notices, Proceedings:
International Confarence on Reliable Software.

le

2=

If vhat is meant is trying to resolve a standard for extensions to the
language (such as a value-fnitialization facility) then that is another
question. Perhaps this should be investigated.

To have PASCAL succeed at a given installation (with the goal of being
used as much or more than FORTRAN) may require the local maintainers
recognition of his or her resonsibility to and power over the lives of
all the PASCAL users affected. Also consider the ideas put forth by
Prof. William Waite, Colorado University, in a guest editorial to the
Vol. 3, No. 3 1973 issue of Software Practice and Experience. He uses
the analogy of organisms (language processors) in an ecosystem (computer
center). PASCAL is a very good product which sells itself-but by giving
the compiler inadequate support, it can fail with certainty. Support
includes not only simple availability, but also publicity and all the
‘other amenities of programming life which now make FORTRAN easy to use.
Exampliss are utility routines, libraries, progras preparation squipment
with the proper character sets, etc.

This summer ve are engaged in additional enhancements to PASCAL's
support at the University of Minnesots. The Computer Science Department
here has now adopted PASCAL throughout its curriculum. By October we
vill be willing to share with other sites several of the documents we
will have produced.

Dl il Fohe G

Andrew Mickel and John Strait
University Computer Center
227 Experimental Engineering
University of Minnesota
Minneapolis, MN 55455

AM/3S/ke

\7

/ /(U DATALOGISK INSTITUT . K@BENHAYNS UN.. ERSITLET
U SIGURDSGADE 41, DK-2200 KOBENHAVN, DANMARK, TLF. (01) TA 94 66

Mr. George H. Richmond July 25, 1975
University of Colorado: JSM/HG -

3645 Marine Street

Boulder, Colorado 80302

U.S.A.

Dear Mr. Richmond.

Having received your list of PASCAL implementations
I will ask you to correct the information of our compiler
thus; '

Implementation Route : PASCAL-P1 Bootstrap

Implementation Status; Complete, Available for

distrivution.
Sincerely
\ . mu‘\a#' \'\ﬁ)\'\

J. Steensgaard-Madsen

encl’,

PRELIMINARY DESCRIPTION OF A
PASCAL COMPILER FOR UNIVAC 1100,

‘J. Steensgaard-Madsen
Datalogisk Institut
Sigurdsgade 41 -
DK-2200 Copenhagen
DENMARK -

Introduction,

The following text describes in short a PASCAL compiler

for UNIVAC 1100 machines operating with EXEC 8, The aystem
is developed from a PASCAL P eompiler obtained frem prof-
Lesser Niklaus Wirth, The werk has been done at Datalegisk

Iastitut, University eof Cepeahagen by three students -

Arne Xjar
Jan Hsjlund Nielsen
Nenrik Snog

and a teacher
Joxrgen Steensgaard-Madsen

The present (preliminary) desaoriptien is not complete
in every detail, but tries to convey all relevant infor-
mation to the vast majority of users, It should be used
Sogether with the book

"PASCAL User Manual and Report
By Xathlesn Jemsea and Niklaus Wirth

Springer Verlag 1974
(Lecture Netes in Computer Sciemce mo. 18).

17

Representation of PASCAL programs,

The representation of PASCAL programs for UNIVAC 1100
is based on the standard representation using ASCII -
character set. This i3 converted to FIELDATA using the
rules fixed by UNIVAC, except for opening and closing
brace, { and } » Which are not used. This means that

1 is converted to A and that comments are enclosed in
(* and +), ' :

Restrictions, (July 75)

Variables of type TEXT, except INPUT and OUTPUT, cannot
be used, Page procedure is not implemented.

"DISPOSE is not implemented.

File components containing files cannot be used,
Standard procedures cannot be passed as parameters.
Fields of packed structures cannot be substituted for
yar parameters. .
Sets must be over base types containing at most 72 values
(in case of INTEGER it must be a subrange contained in
o'o 71)'

20

Additional standard identifiers. Parameter specifications.

const ALFALENG = 123 ‘ A name may be associated with a specification of formal
tx!e ALFA = PACKED ARRAY [1 .. ALPALENG] OF CHAR; parameters, This is done in the purlnctdr definition part
HALFA = PACKED ARRAY [1 .. 6] OF CHAR; placed after the variable declaration part. The syntax is

rocedure HALT} <{parameter definition part)> s:=

(* verminate execution *) parag <parsmeter declaration> j ‘ .
{<parameter declaration> ;}

procedure MARK (var I : INTEGER)j

(* returns with I information to be used in recolleoting <parameter declaration) iim (paremeter identifier> =
storage allocated by subsequent calls of NEW #) (<formal section> {; <formal section>})
procedure RELEASE (‘I: INTEGER)3 The parameter names may then be used in tho declaration
(* releases storage allocated by calls of NEW since of procedures and functions

the call of MARK that must have set I *)
{procedure heading> ii=

procedure WRITEPAGE; ' procedure <identifier> ;l
{* advances the printer so that next line is printed procedure <identifier> (<specification>);

as fist line on a new page *)
" {function heading> ::m

procedur o CLOSE (var F : any file); | function <identifier> : <result type> :l
(* this is a file operation, which must be exeoutod function <identifier> (<specification>): <result typed;

a8 the final operation on external f£iles *)
<specificationd ::=
param <parameter 1dentifier>|

. <formal section> {; {formal seqtion)}
Input / Output.

-

<formal section> ::= <formal parameter’éection) l

The procedures read and readln take as parameters variables : procedure <identifier> (' <parameter identifier>)

of type CHAR, INTEGER, REAL, HALFA.and ALFA. Except in case function <identifier) (<parameter identifier>) :
0of CHAR, where just one character is read, leading blanks <result type>

are skipped and the following characters are analysed. In

“case of ALFA (HALFA) at most 12. (6) nonbdlank characters This syntax allowes the complete specification of formal
are read and stored left Justified and blankfilled. With procedures and rnnction7which is required in PLSCAL for
multiple parameters an error exit caused by an end of file UNIVAC 1400.

‘condition will only ocour if EOP is TRUE prior to the call. ‘ 22

21

T -

Loop statement.

For historical reasons the loop statement is included in
PASCAL for UNIVAC 1100.

<loop statement> ii=
loop 1!<statement> ;}
exit if <expression> {; <etatement>}
‘end

The program scheme
Joop Pi; exit if B1; P2 end
is equivalent to

P13 whils not B do begip P2; P end;

Case statement.

In the case statement case labels may be specified by
subranges in usual notation. The final end in a case
statemeat may be replaced by otherwise <statement> meaning
shat the statement following otherwise will be executed if
aone of the labelled statements is selected for exesution.

e3

TECHNISCHE HOGESCHOOL TWENTE

ONDERAFDELING DER TOEGEPASTE WISKUNDE

Mr. G.H. Richmond

University of Colorado
" Boulder Colorado 80302

Computer Center

KENMERK: TW75/INF/302 gnscuepe, 11 augustus 1975

Dear Mr. Richmond,

Regarding the status of the PASCAL-implementation for the PDP1l series.

Date: 8 august 1975
Implementation Route: PLSCAL-Pl, Cross Compiler described in PASCAL

to be run on PASCAL system for DEC-]O.
Target Machine : PDPl] series, no 0.S. requirements (all models).

Implementation Status:Testphase neariﬁ_g completion. Available for
Distribution by Dec. 1975.

Restrictions ¢ except for standardfiles INPUT & OUPUT,files
.are not implemented. Jump out of procedure
not implemented.
Ixtensions : formal/procedure/function specification required.

Array-parameters with unspecified bounds are

allowed. Functions may deliver results of any
type.

Yours nérely..E .

Drs. C. Bron.

ENSCHEDE - DRIENERLO - POSTBUS 217 - TELEFOON: 05420 - 80111 - TELEX 44200

24

BASSER DEPARTMENT OF COMPUTER SCIENCE

School of Physics (Building A28),
University of Sydnay, N.S.W. 2006

15th August, 1975

Mr. G.H. Richmond,
University of Colorado,
Computing Centre,

3645 Marine St.,
Boulder, Colorado,
U.S.A. 80302

Dear Mr. Richmond,

In response to your circular of June §, I am
providing the following information.

As Dr. Sedgwick recently left the Department in
order to take up a position in Toronto, the contact for
the local Pascal-P2 implementation is myself. The status
of the implementation is "progressing” with completion
anticipated around the end of this year. The main hold-

- up has been the lack of documentation for the B1726's

operating system.

Since the Bl1726 is user-microprogrammable and bit-
addressable, the implementation strategy is basically that
of microcoding the Pascal-P interpreter. (In fact, all
languages on the B1726 are implemented in this manner.) As
well, the compiler has been modified so that it supports
the EBCDIC character set and generates "machine" instructions
which support bit-addressable data items of arbitrary length.
Our configuration parameters have been chosen as follows:
16777215, 25, 34, 8, 1,72, 24, 16, 24. Please note that the
unit of storage is obviously the bit, and that the setsize
of 72 is arbitrary and will be extended to 256 eventually,
to allow sets of chars. Another consequence, of bit-
addressability is that the packed keyword becomes superfluous,
thus eliminating one "restriction" in the present compiler.

It is also encouraging to observe that initial
estimates of the compiler's size place it well below that
of the Burroughs-supplied compilers (including Fortran,
Cobol, RPG), with the exception of the Basic compiler.

Yours sincerely,

ey) Getbes

Antony J. Ge

25

Intercoliege Deportment of

<COMPUTER AND INFORMATION SCIENCES
512 Weil Hall

904-392-2371

University of Florida

Gelnosvilie, 32611

Degree Pregrams in the Colleges of
ARTS AND SCIENCES,
BUSINESS ADMINISTRATION

August 18, 1975 end ENGINEERING

Mr. George H. Richmond
University of Colorado
Computing Center

3645 Marine Street
Boulder, Colorado 80302

Dear Mr. Richmond:

As I mentioned in our telephone conversation last week, I have successfully
transported the PASCAL 'P' compiler to the TI S80A, & 16-bit word minicom-
puter.

Machine requirements are:

1. Minimum of 36K of main memory (4K for operating system)
2. disk
3, Silent 700 console with dual cassettes .

The P-code for the compiler occupies 27,936 words (2 words/instructionm) and
the loader-interpreter occupies 3,744 words. Storage in main memory is dy-
namically allocated so the system can be run on any machine having at least
36X of main memory. '

Since the P-code for the compiler is so large (approximately 17,000 records)
it was physically split into three parts on a large computer and transmitted
across telephone lines to cassettes. Then it was merged back into one file
on the TI disk.

Pertinent configuration parameters are:

INTSIZE = 1 SETSIZE = 4
REALSIZE = 2 PTRSIZE = 1
CHARSIZE = 1 STRGLGTH = 6
BOOLSIZE = 1 INTBITS = 15

Sincerely yours,

b Mo / #famoe—

Gilbert J. Hansen
Assistant Professor

26

The University of Tasmania

) ,
] , >] Postal Address: Box 252C, G.P.0., Hobart, Tasmania, Australia 7001 Nr. Richmond. 18th August, 1975.
-~ .
3 Teleghone: 230661, Cables Tasuni’ Telex: 68160 UNTAS

W AEPLY PLEASE QUOTE: Information Science Department. Useful information for other implementors: - A few sheets showing the (static)
) frequency of occurrence of each of the SC-machine instructions is

FRE MO, oo e available on request, also doublet frequencies. This shows which

o TELEPHONING. OR CALLING . 18th August, 1975. instructions may be ignored or simplified in interpreting or macro-

expanding the code, and where most of the space goes (and very
ABCFOR - e e likely the time too). Since this route was discarded as unnecessarily
) difficult, no dynamic execution frequencies are available.

Mr. G.H. Richmond, Also note that sets of 48 bits are sufficient to bootstrap up the
Computing Center, Pascal-P compller itself (the largest set has 48 elements). The
University of Colorado, statement in the documentation relating to 59 bit sets is simply a CDC
BOULDER, COLORADO. hangover which has not been checked. This has significance to 48-bit

machines (as 86700).
Likely completion date: November/December 1975.

Dear Mr. Richmond,

in response to your letter relating to communication between Pascal Yours sincerely,

implementors, | can only heartily agree. | therefore give you the following points :
relating to our work on Pascal-P2. %1{] 8{%
. .

.Status: incomplete (1975 August)

Purpose of implementation: Iinvestigation of portability; use of Pascal in A.H.J. SALE,
teaching. Professor of Information Science.

-Route: Plggybacking via PASCAL-1 on Cyber 72 to produce Burroughs B6700 'assembly 2
code', thence 'assembly code' to be processed for route: This two-step %
process separates the easy part (generating B6700 code) from the hard part
{getting the B6700 to accept it).

© Impression of package: Far too little thought given to portability and to
documentation. Pascal-P2 still betrays its heritage as a CDC-biassed
product in subtle but annoying ways, though vastly better than earlier
‘Pascals; it remains a test-bed product designed for a restricted purpose,
and despite the claims made for It in the documentation, could be made
vastly easier to port (whether bootstrapped or piggybacked).

Main Implementation difficulties: Doing sensible things on a highly structured
computer (without a |inear von-Neumann memory) with multiple-word objects,
particularly allocated in the heap. It seems a great pity to have to forego
the many advantages of the B6700 architecture because of some of Pascal's
features, and yét trying to use all the good features may well lead to
excessive memory fragmentation and segmentation; also possibly complex
code generation for different handling of constructs. For example should
all records be individual segments? or should a simulated linear store
(= a large declared vector) be used to pretend to be a more conventional
machine?

w7

UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF APPLIED PHYSICS AND INFORMATION SCIENCE
COMPUTER SCIENCE DIVISION , C-014

LA JOLLA, CALIFORNIA 92093

August 22, 1975

Professorxr A.H.J. Sale
University of Tasmania
Box 252C, G.P.O.
Hobart,

Tasmania 7001

Dear Professor Sale:

Y

The short-term objectivae for the B6700 compile-assemble system 18 to) ide
a back-up mcons for studonts to use for PASCAL houmework problams starting in late
September. Our PDP-11 equipment is not all here yet, and we clearly will not be
ready to use the small machines with students during the first few weeks of the
Fall Quarter. Over tho time period of tha academic yeur about to start, ve will
almost certainly have someone complete the job of making & PASCAL compiler that
can generate B6700 code directly. Yet to be resolved is the question of whether ve
can map the PASCAL data structures into the array-row structures of the B6700
without doing violence to the basic approach of the P-compiler.

The interpretive system is slow on the B6700, as might be expected, The major
consumer of time is the low level character processing in the INSYMBOL and NEXTCH
procedures. We have changed these procedures completely, so as to depend upon
installation intrinsic functions (Standard Procedures) that make use of the B6700
string processing hardware. The GETSYM intrinsic returns information on each
successive token in an area of stack that serves as a scanner information block.
This provides a clean interface between compiler and interpreter, but it rums about
half as fast as an earlier less-clean version (part way through the bootstrapping)
in which virtually all of the work of INSYMBOL was done in an ALGOL intrinsic.

The current B6700 interpretive version takes about 10 minutes of processor time to
compile the source file from Zurich. We expect the compile-assemble version, and
aleo the PDP-11 version, to run roughly five times faster than that.

During the next two months we will be up to our ears in alligators getting
this system completed well enough to use for teaching. At a later stage, I would
be happy to share more details with you.

We are indeed working with PASCAL on the B6700. Whether the work is of

immediate interest to you is another question, Making PASCAL into a stable B6700 Sincerely,
product for users is a secondary objective of our project. Our primary aim is to
create an interactive student debugging environment on the PDP-11, with virtually C’ i ﬁ ‘A‘
all of the software writtem in- PASCAL, ’ ®

. Kenneth L. Bowles
. The overall objectives of the project are described in the enclosed project : : Professor (Computer
prospectus. Students will interact with PASCAL on the small machines in a manner : Science)

very similar to the debugging environment of APL on IBM 360/370 systems, PASCAL

is interpreted using a modified version of the Zurich P-Machine recently released.

The main purpose of the modifications is to reduce the size of the compiled code 30
80 that the PASCAL compiler can fit within the limited core of a small machine,

Yes we have done the same kinds of statistical studies represented in the reports

you kindly sent, though our data is not in as elegant a form. We are confident that

the compiler can be run on a PDP1l with at least 20K words of memory. We are hoping

to reduce that amount. further to perhaps 16K, when time permits. Currently the

interpreter is operating, but has yet to be tried with the whole compiler on the

PDP~-11.

We are using the modified PASCAL compiler on the B6700 as a tool for developing
the new PASCAL system, and gencrating pseudo-code for the PDP-11. Having started
with an interpreter for the Zurich P-Machine, we have progressed through various
stages of bootstrapping to get a system compatible with the PDP-11.objective, and
the interactive system objective. Concurrent with the work using the interpreter,
we also have an advanced student programmer writing an assembler which converts
the compiler P-code output into directly executable B6700 code. The B6700 code
has been executed with small programs, and should be running the whole expanded
compilexr within a week or so. This compile-assemble system manages its memory im one
large array in a fashion similar to that used on conventional machines. We are
using the B6700 SWAPPER for much of our batch work, and hence have been able to use
DIRECT (non-overlayable) array space for this purpose to enhance the speed of the

process ing.

34

he . University of Tasmania

c » Posiel Addesss: Ban 252C. G P.0., Hebert, Tasmanie N0V
Toluphone: 23 865¢. Cabies Tasuni' Veteu: 58130

= oy o e Information Sclence Dept.
A . ’
& POSINIRED BN ML N
-~ 9tb September, 1975.
Mr. Richmond,

Computing Centre,
University of Colorado,
3645 Marine St.,

BOULDER, COLO.

Dear Mr. Richmond,

Pascal~-P Documentation

| have received, In response to some of my
correspondence, a8 copy of some error notes on Pascal-P
detected by the University of Karisruhe. The documentation
is in German, and | have attempted to translate the sense
of the notes with the results attached. | hope that this may
be of use to other Pascal-P Implementors. | have asked the
originators to see If my translation accords with what they
thought they said in case | have missed some idiomatic nuance
(technical German terms are quite as mystifying as English
ones until decoded; witness ''bugs'’) and | shall let you
know if there are any alterations or additions.

Yours sincerely,

M He—

. A.H.J. SALE,
Encl. Professor of Information Science.

31

LIST OF PASCAL DEFECTS

The following errors and defects ware found during the lnleuntatlon of the
PASCAL system.

1. Defects in the mllnr which adversely affect the bootstrapping to different
computers.
{a) Assumptions are made about the collating sequence of the character set which

are neither warranted nor defined in the axioms concerning character type.
in particular:

= The translator assumes that the characters '+' and ‘;' encloss all
operators in the declarations of

SSY, SOP: arcay ['+;..';')

= The test which determines whether a character is alphanumeric Is
formulated as

ORD(CH) >= ORD('A') AND ORD(CH) <= ORD('9')

{b) The compiler accumulates errors only during the translation of a line of
source text. At the end of the translation the complier cannot determine
automatically whether the generated code s correct, or whether the PASCAL
program was in error or not.

{c) The constant CHARSIZE, which Is used to psremeterize the compller for
various computers, is employed with the meaning "'Storage units per
character' and not "characters per storage unit''. While this is clesrly set
out in the documentation it is unexpected.

2. Dellberste restrictions imposed by the compller.

(a) Only the first 8 characters of Identifiers are significant in distinguishing
them; remalining characters are lgnored.

{b) String constents are limited to a maximum of 16 characters.

3. Errors in the compiler.

(e) When translating a PASCAL program which doss not have the terminating symbol
EWND. the compiler hangs in an Infinite loop. The error is In procedure
NEXTCH. It has the structure:

PROCEDURE NEXTCH;
BEGIN
F EOL THEM BEGIN ... END;
IF NOT EOF{INPUT) THEN
BEGIN ..."read next symbol and assign value to global"
EHD ELSE WRITE(OUTPUT, 'EOF ENCOUNTERED®)
END;

32

&,

(v)

()

In this case NEXTCH is called by SKIP (via INSYMSOL) until the terminating
symbol is read. |f NEXTCH in the compiler is not altered, the compiler
loops endlessly. An error exit In NEXTCH would solve the problem but this
is not permitted In PASCAL-P, (The arror was probably not noticed in the
COC-Implementation as multiple calls to EOF with the value TRUE cause a
program-dump in that system. This meaning of EOF is not endorsed in the
PASCAL definition and Is not obvious.)

When In the procadure INSYMBOL a symbol Is read which does not belong to
the recognised symbols, an error Is signalled but the next symbol Is not
read In. When SKIP initlates the consequent search to recover from the
error, the compiler finds ltself In a loop, as subsequant calls continue to
find the undefined symbol, L

The varisble EOL should be Initiallised to the value FALSE (not TAUE),
since otherwise the first action of the compiler Is to Issve a read
commend, and the counting of source lines stsrts at two.

Amsthetic defects in the compiler,

()

(b)

Yo comply with PASCAL-P, the LOOP-EXIT construction has had to be deformed
Into & REPEAT-UNTIL construction. The change was made with too narrow a
view, with the result that the constructions are much more difficult to
understand. The loop construction, which is to be found in most procedures,
has for example the following form (taken from INSYMBOL):

REPEAT
WHILE CH = * * AND NOT EOL DO NEXTCH;
TEST:=EOL;
IF TEST THEN NEXTCH
UNTIL NOT TEST;
There is an error message which Is emitted not only by error number 117,
but also with the message 'TYPE-ID' <identifier>. This message does not
match the source line and the following error-messages (and their lines)
In the procedure ENDOFLINE, but seems to be issued immediately when the
ervor is recognised in the syntactic and semantic analysis. The cause has

not been found despite an intensive search. Theresafter the layout of the
program listing, error numbers, and error text becomes unrecognisable.

Properties of the compiler which affect interpretation.

(a)

Cb)

The compiler produces the same commands as for all other objects for packed
arrays of characters (strings). Also at the level of the interpreter
strings must be treated as arrays of single characters.

Parameterising the compiler for the storesize of sets (SETSIZE=2) does not
result in efficient store utllisation in the interpreter. The formal
parameters of procedures are seat up with the maximum size of objects of
type INTEGER, REAL, CHAR and SET. Similarly all load and store commands

ignore the type of the data-types and are not parameterised. As a consequence

{f the stack Is not to be full of objects all of the largest size, the load
and store instructions have to inspect type-tages in the interpretive store.

Keeping type-tags (as implied by a direct interpreter implementation) Is
Incredibly wasteful of store, and isufficient thought has been given to the
problems of wordsize In claiming portablility.

33

(c) The convention of the interpreter is not followed when cods is generated
for formatted output of strings. For example:
WRITE (QUTPUT,'ABC*:10) Is compiled to:
LCA ‘ABC’
LoCl 10
Loct 3
LAO 5
CSP WRC

The Interpreter sxpects the code:
LCA 'ABC’
Locl 3
Lot 10

LA0 H
CSP WRC

NOTE: Translated from the original GERMAN supplied by the Unlversity of
Karlsruhe (1975 August 21), with free translation.

1975 September 1
AN.J. Sale,

Department of Information Sclence,

University of Tasmanis,
6.P.0. Box 252C,
HOBART, TASMANIA. 7007

34

